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�� Introduction

Twenty years ago Yau� ����� generalized the classical Liouville theo�
rem of complex analysis to open manifolds with nonnegative Ricci curva�
ture� Speci�cally� he proved that a positive harmonic function on such
a manifold must be constant� This theorem of Yau was considerably
generalized by Cheng�Yau 	see �
��� by means of a gradient estimate
which implies the Harnack inequality� As a consequence of this gradient
estimate 	see �
���� one has that on such a manifold even a harmonic
function of sublinear growth must be constant� In order to study further
the analytic properties of these manifolds one would like to restrict the
class of functions to be considered as much as possible while minimizing
loss of information 	cf� ��� ����� From the results of Cheng and Yau�
it follows that a natural candidate is the class of harmonic functions of
polynomial growth 	note that they must be of at least linear growth��
In fact� in his study of these functions� Yau was motivated to make the
following conjecture 	see ����� ����� and ����� see also the excellent survey
article by Peter Li� ������

Conjecture ���� 	Yau�� For an open manifold with nonnegative
Ricci curvature the space of harmonic functions with polynomial growth
of a �xed rate is �nite dimensional�

We recall the de�nition of polynomial growth�

De�nition ���� For an open 	complete noncompact� manifold�Mn�
given a point p � M let r be the distance from p� De�ne Hd	M� to be
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the linear space of harmonic functions with order of growth at most d�
This means that u � Hd if u is harmonic and there exists some C � �
so that juj � C	
 � rd��

The main result of this paper is the following�

Theorem ���� Conjecture ��� is true if M has Euclidean volume
growth�

Mn is said to have Euclidean volume growth if there exists p � M
and a positive constant V such that Vol	Br	p�� � Vrn for all r � �� Note
that by the Bishop volume comparison theorem 	see ���� we have that
Vol	Br	p�� � Vn

� 	
�r
n for r � �� Here as in the rest of this paper Vn

�	r�
denotes the volume of the geodesic ball of radius r in the n�dimensional
space form of constant sectional curvature ��

We show Theorem ��� by giving an explicit bound on the dimension
of Hd	M� depending only on n and d�

From the new results given by the investigation initiated by the �rst
author in �
��� �
��� and �
��� and later on further developed by the
�rst author jointly with Cheeger in ���� ���� and ���� and �nally the joint
work of the �rst author with Cheeger and Tian in �

�� we have a good
understanding of the geometry of spaces with Ricci curvature bounded
from below�

For the present paper� it is particularly important that it was shown
in ��� that every tangent cone at in�nity of a manifold satisfying the
assumptions of Theorem ��� is a metric cone� For an open manifold Mn

with nonnegative Ricci curvature� we say that a metric space� M�� is
a tangent cone at in�nity of M if it is a Gromov�Hausdor� limit of a
sequence of rescaled manifolds 	M� p� r��j g�� where rj ��� Recall that
by Gromov�s compactness theorem� ���� any sequence� ri � �� has
a subsequence� rj � �� such that the rescaled manifolds 	M� p� r��j g�
converge in the pointed Gromov�Hausdor� topology to a length space�
M��

Examples of Perelman 	����� see also ��� for further examples� show
thatM� is not unique in general even ifM has Euclidean volume growth
and quadratic curvature decay 	cf� �
�� and �
���

We also note that examples of Perelman 	see ����� most likely can
be modi�ed to give examples of manifolds with nonnegative Ricci cur�
vature� Euclidean volume growth and in�nite topological type�

It is a classical result that the space of harmonic functions of polyno�
mial growth on Euclidean space is spanned by the spherical harmonics�
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Recall that the spherical harmonics are the homogeneous polynomials
whose restriction to every sphere centered at the origin is an eigenfunc�
tion of the spherical Laplacian� We will observe in Section 
 that this is
a general property of metric cones� That is� the harmonic functions of
polynomial growth on a metric cone with smooth cross�section can be
written as a linear combination of harmonic functions which separate
variables 	into the radial and cross�sectional directions�� Further� they
are homogeneous in the radial direction� it follows that the restriction to
the cross�section gives an eigenfunction� where the eigenvalue depends
on the dimension and the order of growth� We will show that asymp�
totically this picture still holds in the general case of nonnegative Ricci
curvature and Euclidean volume growth 	cf� Theorem ������ That is� on
many su�ciently large annuli� harmonic functions of polynomial growth
will almost separate variables and be approximately homogeneous in the
radial direction�

It seems worth pointing out some of the di�culties that arise in
the general case of nonnegative Ricci curvature and Euclidean volume
growth compared with the model case of a cone� Here we will only
indicate three such� The �rst is the low regularity of the cross�section
of tangent cones at in�nity 	cf� ����� The second is that the frequency
function 	see Section  for the de�nition of the frequency function� is no
longer monotone in the general case� see Section 

 and ���� Thirdly�
the frequency function is not known to be bounded� see ��� for further
discussion of this�

Simple examples show 	see Section 

� that there exist manifolds
with nonnegative Ricci curvature which admit no nontrivial harmonic
function with polynomial growth� in fact� we can take such a manifold
to have positive sectional curvature� However� to our knowledge no such
example exists with nonnegative Ricci curvature and Euclidean volume
growth� see ��� for further discussion of this�

Important contributions on this Conjecture of Yau and related prob�
lems have been made by Donnelly�Fe�erman� Kasue� Li� Li�Tam� Wang�
and Wu 	see ���� ��
�� ���� ����� ����� ����� ��
�� ���� ����� and ������ In
related work� F��H� Lin has studied asymptotically conical elliptic oper�
ators�

The organization of this paper is as follows�

Section 
 is concerned with the description of harmonic functions
with polynomial growth on cones and serves to illustrate the methods
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that we will employ in the general case�
In Section  for later use we introduce an important tool which is a

generalization of Almgren�s frequency function�

A lower bound for the frequency of a harmonic function on good
annuli is given in Section ��

We study in Section � the monotonicity properties of the frequency
function for harmonic functions on manifolds with nonnegative Ricci
curvature and Euclidean volume growth� We also study the asymptotic
homogeneity properties of harmonic functions with polynomial growth
on these manifolds�

Section � deals with orthogonality properties of harmonic functions
on these manifolds�

We get in Section � an explicit upper bound for the number of or�
thonormal functions with bounded gradient on a compact manifold with
Ricci curvature bounded from below and diameter bounded from above�

Section � contains the proofs of some elementary results for functions
of one variable with bounded growth� that will be used later on�

Given a set of independent harmonic functions with polynomial
growth on a manifold with nonnegative Ricci curvature and Euclidean
volume growth� we show in Section �� how to produce large annuli and
a set of independent harmonic functions with good properties� This
together with the results of Section � allows us to convert the 	global�
polynomial growth condition to information on a de�nite scale 	local��

With the aid of the results of Sections � and � we obtain� in Section
�� a technical result that will be needed in the inductive step of the
proof of Theorem ����

Using the results of the previous sections� Theorem ��� is proved in
Section 
�� by giving a bound on the dimension of the space of harmonic
functions with bounded growth 	and suitable independence properties�
on any su�ciently large annulus in an open manifold with nonnegative
Ricci curvature and Euclidean volume growth�

Section 

 furnishes various examples that illustrate the di�culties
in the Euclidean volume growth setting compared with the model case
of a cone� see ��� for further discussion of this�

In the appendix� we will collect some consequences of the �rst vari�
ation of energy that we need for this paper�

Finally� we point out that in a joint paper with Cheeger 	see �
���
we study the case of linear growth harmonic functions�

Throughout this paper� if N is a closed manifold� we take the conven�
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tion that a function g is an eigenfunction with eigenvalue � if �g��g �
�� With this convention� � is a negative operator but we will say that
the eigenvalues are positive�

Acknowledgment� We wish to thank Je� Cheeger and Gang Tian
for numerous helpful discussions� and Chris Croke� Peter Li� Fang�Hua
Lin� Grisha Perelman� and Richard Schoen for their interest�

The results of this paper were announced in �
��

Some time after the submission of this paper� in part by further
developing the ideas presented here� we solved the general case of the
conjecture of Yau� ���� We wish to point out that in this paper in
addition to showing the �nite dimensionality of Hd� we also describe the
asymptotic structure of the harmonic functions with polynomial growth
	like the almost separation of variables�� This �ner description is in part
due to the asymptotic cone structure of the manifolds considered here�
It should also be pointed out that the bounds for the dimension of the
space Hd given in this paper depend exponentially on d� In a subsequent
paper to ���� we gave polynomial bounds sharp in the order of growth�
see ����

�� Harmonic functions with polynomial growth on cones

In this section Nn�� will be a closed smooth 	n � 
��dimensional
manifold� The study of function theory on the Euclidean cone on N

is meant to illustrate the methods that we will employ in the proof of
Theorem ���� Note however that the results of this section will not be
used in the proof of Theorem ����

We will often further assume that RicN � 	n � �� This condition
is equivalent to the Euclidean cone C	N� � 	���� �r N

n�� having
nonnegative Ricci curvature� In this section u	r� �� is a smooth function
on the Euclidean cone C	N� which may be extended continuously to
the vertex� On such a cone� the Laplacian can be written as

�C�N�u �
��

�r�
u�

	n� 
�
r

�

�r
u�




r�
�Nu	r� ���	
�
�

In general� we will say that a function is homogeneous of degree p if it
is of the form u	r� �� � rpg	���

First� we claim that if u	r� �� � f	r�g	�� is harmonic� then f	r� � rp

for some p � � and g is an eigenfunction of N � To see this note that
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�
� becomes

�C�N�u � f ��g � 	n� 
�f
�

r
g �

f

r�
�Ng�	
��

From this we have that

�Ng � �g � ��	
���

Note also that if RicNn�� � 	n� � then � � � or � � 	n� 
�� Substi�
tuting 	
��� in 	
�� gives

� � f ��g � 	n� 
�f
�

r
g � f

r�
�g

�

�
f �� � 	n� 
�f

�

r
� �

f

r�

�
g�

	
���

Therefore

f �� � 	n � 
�f
�

r
� �

f

r�
� ��	
���

We easily see that if p	p� 
�� 	n� 
�p�� � p��	n� �p�� � �� i�e��

p �





h
�	n� � �

p
	n� �� � ��

i
�	
���

then f	r� � rp is a solution of 	
���� Note that we take only the non�
negative solution p because the negative solution has a pole singular�
ity at the vertex� Further� we see that if we require that p � d then
� � d	d� n� �� and therefore

� � p	p� n � � �	
���

Collecting the previous calculations� we have the following elemen�
tary lemma�

Lemma ���� A function u	r� �� � f	r�g	�� on C	N� is harmonic
if and only if

�Ng � �g � �	
���

and

f	r� � rp �	
�
��

where � � p	p� n� ��
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Let E�	N� denote the linear space spanned by the eigenfunctions of
N with eigenvalues less than or equal to �� Further� we let � � �� �

�� � �� � � � � denote the distinct eigenvalues of N and let pj � � be
determined by �j � pj	pj � n� ��

The following theorem is well known 	see �����

Theorem ����� �Harmonic functions on a cone�� If u is a har�
monic function on C	N�� then

u	r� �� �
X
j

ajr
pjgj	�� �	
�
�

where the aj are constants� Furthermore� u has polynomial growth if
and only if this is a �nite sum�

Proof� We may assume that u	�� � �� By the spectral theorem
applied to N � we may write

u	
� �� �
X
j

ajgj	�� �	
�
��

Consider the harmonic function

v	r� �� � u	r� ���
X
j

ajr
pjgj	�� �	
�
��

Note that v vanishes on �B� and at the vertex� by the maximum prin�
ciple� v vanishes identically� The second claim follows easily from the
�rst� q�e�d�

We will now obtain a second proof of Theorem 
�
� that is closer to
the proof of Theorem ����

If u is a Lipschitz function on C	N� then we set

D	r� � r��n
Z
Br�p�

jruj� �	
�
��

I	r� � r��n
Z
�Br�p�

u� �	
�
��

F 	r� � r��n
Z
�Br�p�

�����u�r
����� �	
�
��
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and �nally the frequency 	cf� �
� and Remark �
��

U	r� �
r
R
Br�p�

jruj�R
�Br�p�

u�
�
D	r�

I	r�
�	
�
��

Lemma ����� If u is harmonic then U is monotone nondecreasing�

Proof� To show this note that

	logU��	r� �
D�	r�
D	r�

� I �	r�
I	r�

�	
���

Further� from the �rst variation of energy� i�e�� Proposition A��� we
have that

D�	r� �r��n
Z
�Br�p�

jruj� � � n

r
D	r�

�r��n
Z
�Br�p�

�����u�r
����
�

	
�
�

�
F 	r�

r
�

and� since �u� � jruj��

I �	r� � r��n
Z
�Br�p�

hru��rri� r��n
Z
�Br�p�

u��r �

� n

r
I	r�

� r��n
Z
Br�p�

�u� � r��n
Z
Br�p�

jruj� � D	r�
r

�	
��

Therefore

	logU��	r� �
D�	r�
D	r�

� D	r�
rI	r�

	
���

� 

�
r��n

R
�Br�p�

j�u
�r
j�

D	r�
� D	r�

rI	r�

�
	
���

�
r���n

D	r�I	r�

�Z
�Br�p�

�����u�r
����
� Z

�Br�p�
u�	
���

�
�Z

�Br�p�
u
�u

�r

��
�
A �
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From the Cauchy�Schwarz inequality we get that

	logU�� � ��	
���

q�e�d�

We will later see 	Theorem 
��� and Lemma 
��� that in the case
of a cone many U are in fact constant�

Next we have the following�

Lemma ����� If u is harmonic and U is constant� then u	r� �� �
f	r�g	��� Conversely� if u	r� �� � f	r�g	�� is harmonic� then U � p�
f	r� � rp and �Ng � p	p� n� �g � ��

Proof� Since U is constant� then by the equality in the Cauchy�
Schwarz inequality� see 	
���� we have

�u

�r
� h	r�u�	
���

Integrating 	
��� shows that u	r� �� � f	r�g	��� The lemma now follows
from Lemma 
�� and an easy computation� q�e�d�

Lemma ����� If u � Hd	C	N�� then U � d�

Proof� Equation 	
�� is equivalent to

	log I	r��� �
U	r�

r
�	
����

Integrating equation 	
���� yields

I	r� � exp

�Z r

s

U	t�

t
dt

�
I	s� �	
��
�

Since U is monotone nondecreasing� we see that U must be bounded by
d� q�e�d�

De�nition ����� 	Order at in�nity�� If u is harmonic� then we
de�ne the order at in�nity of u� ord�	u�� by

ord�	u� � lim
r��U	r��	
����

Note that this limit exists since U is monotone nondecreasing by
Lemma 
�
�� When u has polynomial growth� then Lemma 
�� shows
that ord�	u� is �nite� Likewise� the monotonicity of U allows us to
make the following de�nition�
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De�nition ���	� 	Order at the vertex�� If u is harmonic� then we
de�ne the order at the vertex of u� ord�	u�� by

ord�	u� � lim
r��

U	r��	
����

Lemma ���
� If u and v are harmonic functions� then

ord�	u� v� � maxford�	u�� ord�	v�g �	
����

Proof� By the Cauchy�Schwarz inequality� we have that

log	Iu	v� � log	Iu � Iv�
� log	�� � maxflog	Iu�� log	Iv�g �

	
����

Further� from 	
���� it follows that

	log I	r��� �
U	r�

r
	
����

for any harmonic function� If ord�	u � v� � maxford�	u�� ord�	v�g�
then there exist an R � � and an � � � such that for any r � R�

	
���� 	log Iu	v	r��
� � maxf	log Iu	r���� 	log Iv	r���g� �

r
�

Since �
r
is not integrable� this would contradict the inequality in 	
�����

therefore� 	
���� follows� q�e�d�

Lemma ��	�� Suppose that u and v are harmonic functions on
C	N�� If in addition v	r� �� � rpg	��� then

r��n
Z
�Br

uv � r�p
Z
�B�

uv �	
���

Proof� Using Green�s formula� we get that

d

dr

�
r��n

Z
�Br

uv

�
�r��n

Z
�Br

�

�r
	uv�

�r��n
Z
�Br

v
�u

�r
� r��n

Z
�Br

u
�v

�r
	
����

�r��n
Z
�Br

u
�v

�r
�	
����
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From the homogeneity of v� we have that �v
�r �

p
r v� Substituting this

into 	
�����

d

dr

�
r��n

Z
�Br

uv

�
�
p

r

�
r��n

Z
�Br

uv

�
�	
����

Integrating 	
���� yields 	
��� and the lemma follows� q�e�d�

De�nition ��	
� We say that two harmonic functions� u and v� on
C	N� are orthogonal if Z

�B�

uv � � �	
����

Note that by Lemma 
���� if v is homogeneous� and u and v are
orthogonal in the sense of De�nition 
���� thenZ

�Br

uv � �	
����

for all r � �� Also note that from the maximum principle it follows that
the left side of 	
���� de�nes an inner product on the space of harmonic
functions on C	N��

Lemma ��	�� Suppose that u is harmonic on C	N� with ord�	u�
� d � � and that u is orthogonal to the homogeneous harmonic func�
tions whose growth is less than d� Then for r � s � �� we have

D	r� �
�r
s

��d
D	s� �	
����

Proof� Let � be given by 	
���� that is�

� � d	d� n � � �	
��
�

By the orthogonality assumption and Lemma 
���� we get the following
scale�invariant Poincar�e inequality for the cross�section �Br�R

�Br
jrTuj�R

�Br
u�

� �

r�
�	
���

where rTu is the tangential gradient� Note that

jruj� � jrTuj� �
�����u�r

����
�

�	
����
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Using 	
����� we can rewrite 	
��� as

rD�	r�� 	� n�D	r�� F 	r� � �I	r� �	
����

From the �rst variation of energy 	see equation 	
�
�� it follows that

D�	r� � 
F 	r�

r
�	
����

Eliminating F 	r� in 	
���� and using 	
����� we have

D�	r�� 	� n�D	r�

r
� �I	r�

r
�	
����

Dividing 	
���� through by D	r� and noting that I
D � U�� � d��� give

D�	r�
D	r�

� 	� n�

r
� �

rU	r�
� �

d r
�	
����

Substituting 	
��
� for � in 	
����� combining the �
r
terms� and rewriting

the �rst term as a logarithmic derivative� we obtain

	logD	r��� � d

r
�	
����

Integrating 	
���� yields 	
����� q�e�d�

Lemma ����� If u is harmonic� u	�� � �� and ord�	u� � �� then u

is identically zero�

Proof� We may assume that u is not constant� this implies that
I	r� is positive for every r � �� By 	
��
� we get

I	r� � �dI
�r


�
�	
����

where d � U	
� and we take r � 
� From the scale�invariant Poincar�e
inequality� we have that

��

Z
�Br

u� � r�
Z
�Br

jrTuj� � r�
Z
�Br

jruj� �	
��
�

where �� is the �rst eigenvalue of the Laplacian on N � and rTu is the
tangential gradient of u� Using 	
���� and the monotonicity of I � and
integrating 	
��
� from r

� to r we are led to

��d��rI	r� ���rI
�r


�
� ��

Z r

r
�

I	t�dt

�rD	r� �
	
���

This shows that U	r� � ��
��d and the lemma follows� q�e�d�



harmonic functions with polynomial growth ��

Corollary ��
�� Suppose that u is harmonic on C	N� with
ord�	u� � d � � and that u is orthogonal to the homogeneous har�
monic functions whose growth is less than d� Then u is homogeneous�

Proof� By Lemma 
���� we may assume that ord�	u� � �� let
c � ord�	u�� By the de�nition and monotonicity of U �

cD	r� � I	r� � dD	r� �	
����

Therefore� by Lemma 
���� for r � s � �� we have

I	r� � c

d

�r
s

��d
I	s� �	
����

Setting r � 
 and taking s � 
� we see that

I	s� � c

d
s�dI	
� �	
����

By equation 	
��
�� 	
���� implies that ord�	u� � d� Since U is mono�
tone� we conclude that U is constant� The corollary now follows from
Lemma 
��� q�e�d�

We are now ready to give a second proof of Theorem 
�
��

Theorem ��
�� �Harmonic functions with polynomial growth on
cones� second version�� If Nn�� is a closed 	n� 
��manifold� then

dim	Hd	C	N��� � dim	Ed�d	n���	N���	
����

In fact� if u � Hd	M� then

u	r� �� �
X
pj�d

rpjgj	�� �	
����

where gj is an eigenfunction with eigenvalue �j�

Proof� The inequality ��� in 	
���� follows from Lemma 
��� We
will show the reverse inequality� i�e�� ���� by induction on j� For j � �
we have by Lemma 
�� that ord�	u� � �� by the monotonicity of U �
and Lemma 
�
�� u must be constant� Assume now that the theorem
is true for pj and will show that it is true for pj	�� Given u � Hpj�� �
by the inductive hypothesis and Lemma 
��� we may assume that u �
u� � u�� where u� � Hpj�� � u

�� �
P

pk�pj r
pkgk	��� and

R
�B�

u�v � � for

all v � Hpj � We have therefore� by Lemma 
���� that
R
�Br

u�v � � for
all r and for all v � Hpj � By Corollary 
��� we conclude that u

� is
homogeneous� the theorem follows� q�e�d�
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Remark ����� For RicN � 	n � � then the case d � � in Theo�
rem 
�
� or Theorem 
��� is essentially a special case of the Liouville
theorem of Yau� ����� the cases � � d � 
 follow from the gradient esti�
mate of Cheng�Yau� �
��� and is in this case equivalent to �� � 	n� 
�
	Lichnerowicz�s theorem� ������

Example ����� In many cases where RicN � 	n � � and N is
di�eomorphic to Sn��� it is possible to round o� the metric on a cone
while preserving the condition that the Ricci curvature is nonnegative�
In fact the change in the metric can often be done by a compactly
supported change in the warping function� As a consequence of Theorem

��� and Proposition 

�� we see that for such a perturbation dim	Hd� �
dim	Ed�d	n���	N���

�� Tools to study the growth of harmonic functions on

manifolds

From now on� unless explicitly stated otherwise� let Mn be an n�
dimensional open manifold with nonnegative Ricci curvature� Set

VM � lim
r��

Vol	Br	p��

rn
�	�
�

note that by the volume comparison theorem this limit exist 	in fact the
quantity in 	�
� is nonincreasing� and is independent of the point p� We
will also assume thatM has Euclidean volume growth� that is� VM � ��
Fix a point p � M and let G denote the global Green�s function on M
with singularity at p� It is well known that G exists in this setting 	see
for instance �����

For ease of exposition� we will henceforth restrict our attention to
the case of n � �� The case n �  was done earlier by Li�Tam� ��� 	in
fact� for surfaces with �nite total curvature�� For another proof in the
case n �  using nodal sets see Donnelly�Fe�erman� ����

Set

b �

�
VM

Vn
� 	
�

G

� �
��n

�	��

When M is Rn� the function b de�ned in 	�� is just the distance
function to p� When studying the global analytic properties of M �
the function b is the proper replacement for the distance function 	cf�
Proposition �
� see also �
����
��� �����
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With this choice of b we have

rb � VM

	� n�Vn
� 	
�

bn��rG �	���

�b � 	n� 
� jrbj
�

b
�	���

and

�b� � njrbj� �	���

We de�ne the following quantities

I	r� � r��n
Z
b
r

u�jrbj �	���

D	r� � r��n
Z
b�r

jruj� �	���

F 	r� � r��n
Z
b
r

�����u�n
����� jrbj �	���

and �nally the frequency function 	cf� �
� and Remark �
�� by

U	r� �
D	r�

I	r�
�	���

Observe that if r � s� then

D	r� �
�r
s

���n
D	s� �	�
��

Remark ����� S�Y� Cheng� �
��� showed that locally the critical
sets 	sets where the function is constant and its gradient vanishes� of
any harmonic function are of codimension two on any smooth manifold
	see also Hardt�Simon� ����� their results are valid for low regularity
elliptic equations�� Since the critical sets of b coincide with those of G
	which is harmonic�� it is easy to see that these calculations are valid
on all level sets of b 	and not just at regular values��
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Di�erentiating 	��� gives

I �	r� � 
D	r�

r
	�
�

and therefore

	log I	r��� �
U	r�

r
�	�
��

From 	�
�� we have for s � r � �

I	s� � exp

�


Z s

r

U	t�

t
dt

�
I	r� �	�
��

The quantity Iu	r� is a weighted average of u�� and I�	r� is the
weighted volume of the level set b � r� By 	�
�� I�	r� is constant�
From the de�nition of b it is easy to see that

I�	r� � nVM � nVn
� 	
� �	�
��

Remark ���
� This generalization of the usual frequency function
for harmonic functions 	and harmonic maps� on Euclidean space has the
advantage of being well de�ned globally and re�ecting the global ana�
lytic and geometric properties of the open manifold� When the manifold
is Euclidean space� the monotonicity of the frequency is an analytic ver�
sion of the Three Circles Theorem of J� Hadamard� This type of ratio
has been used by Almgren in his study of multi�valued harmonic map�
pings 	see �
��� by Lin for the study of mappings to cones 	see ������
and by Gromov�Schoen in their work on harmonic mappings to singular
spaces 	see ��� and ��
���

We shall use some asymptotic estimates of the Green�s function on
manifolds with nonnegative Ricci curvature� For the convenience of the
reader� we recall these now� Note �rst that it follows directly from the
Laplacian comparison theorem together with the maximum principle
that the Green�s function� G	x� y�� satis�es

r��n � G	x� y��	�
��

where r is the distance from x to y�
Regarding an upper bound on the Green�s function� we have the

following estimate 	see ���� and ������
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If n � � and Mn is an n�dimensional manifold with RicM � � and
Euclidean volume growth� then there exists a constant C � 
 such that

r��n � G	x� y� � Cr��n �	�
��

It follows from 	�
�� that there exist positive constants 	depending
on M� C� and C� such that

C�r � b � C�r �	�
��

Remark ����� In ����� Li�Yau proved a stronger bound on the heat
kernel which implies the bound on the Green�s function� In fact� they
got an estimate even in the case where M does not have Euclidean
volume growth�

We shall need the following improvement of this estimate� This
proposition shows that in the case of nonnegative Ricci curvature and
Euclidean volume growth the Green�s function has conical asymptotics�
cf� ����

Proposition ����� �	

��� If n � � and Mn is an n�dimensional
manifold with RicM � � and Euclidean volume growth� then for each
�xed x �M

lim
r�y���

G	x� y�

r��n
�

Vn
�	
�

VM

�	��

Observe that 	�� implies the strengthening of 	�
���

lim
r��

b

r
� 
 �	���

Furthermore� from Section � of ��� and 	��� given any � � �� there
exists R � R	p� �� � � such that for all r � R� we haveZ

b�r

��jrbj�� 
��� � �Vol	b � r�	���

and Z
b�r

��Hess	b��� g��� � �Vol	b � r� �	���

where g is the metric tensor on M �
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In fact� all that we essentially require of G 	for this section and
Sections � and �� is that it is harmonic on an annulus and C� close to
a multiple of r��n� where r is the distance to the center of the annulus�
It then follows from ��� that b has the properties similar to 	��� and
	��� 	see Section � of ��� and cf� ����

We will also use the following meanvalue inequality of Li�Schoen�
which for convenience we state only for the case of nonnegative Ricci
curvature�

Proposition ���
� �Li�Schoen� 	����� Suppose that Mn is an n�
dimensional manifold with RicM � � and v is a nonnegative subhar�
monic function on M � Then

sup
Br�p�

v � C

Vol	B �
� r
	p��

Z
B �

� r
�p�

v �	���

where C � C	n��

Often� we will get natural integral bounds for harmonic functions
and their gradients� the meanvalue inequality� Proposition ��� will
allow us to get supremum bounds on a subset�

Finally� we will use that for each r� I	r� de�nes a quadratic form on
the linear space of harmonic functions� The associated bilinear form is
given by

r��n
Z
b
r

uvjrbj �	���

for harmonic functions u and v� Note that from the maximum principle
we have that for the regular values� s� of b� 	��� de�nes an inner
product on the space of harmonic functions on fx j b	x� � sg� Clearly�
this also follows from the monotonicity of I �

�� Lower bound of the frequency

In this section� we will give several versions of a lower bound for
the frequency of a harmonic function� In a future paper we plan on
undertaking a more careful study of this and some of its consequences�

We now de�ne quantities analogous to those of Section  which are
technically easier to work with� Let

E	r� � r��n
Z
b�r

jruj�jrbj�	��
�
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and

W 	r� �
E	r�

I	r�
�	���

We will �rst show that when M has Euclidean volume growth� the
quantity E is equivalent to D when the growth of D is controlled� By
de�nition� the equivalence of D and E implies the equivalence of U and
W �

Proposition ���� �Equivalence of E and D�� LetMn be a manifold
of nonnegative Ricci curvature and Euclidean volume growth� Fix p �
M � Given � � ��  � � 
� and 	 � 
� there exists R � R	p� 	� �� �� � �
such that if r � R� 
 �  �  �� and u is any harmonic function on M
with

D	 r� � 	D	r� �	����

then for all r � s �  r ����log D	s�E	s�

���� � � �	����

Proof� Note that j
� sj � �
�	� implies that

jlog	s�j �
�����
Z �

�
���




t

����� � � �	����

From ��� and the asymptotics of the Green�s function� Proposition
�
 	see also the remarks following that proposition�� given any � � ��
there exists R � R	p� ��� � such that for all r � R� we have����log br

���� � � �	����

and Z
b�r

��jrbj�� 
��� � ��Vol	b � r� �	����

Note that 	���� implies by the Cauchy�Schwarz inequality thatZ
b�r

��jrbj�� 
�� � �Vol	b � r� �	����
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We shall assume that � is small enough to arrange that exp	�� � �
� �

By de�nition� we have for s � R�

jD	s��E	s�j � s��n
����
Z
b�s

jruj�	
� jrbj��
����

� s� sup
b�s

jruj� s�n
Z
b�s

��
� jrbj���	��
��

� s� sup
b�s

jruj� �Vn
� 	
� exp	n�� �

where the last inequality follows from 	����� 	����� and the Bishop vol�
ume comparison theorem�

From the Bochner formula� jruj� is a subharmonic function� Since
exp	�� � �

� 	���� and Proposition �� yields that for r � R�

sup
b��r

jruj� � C�

VM

 ��r��D	 r� �	��

�

where C� � C�	n� � �� in 	��� we do this again in more detail�
Using 	����� 	��
��� and 	��

� we obtain� for r � s �  r�

jD	s��E	s�j � C�

VM

D	 r��Vn�	
� exp	n��

� C�

VM

	D	r��Vn� 	
� exp	n��	��
�

� C�

VM

	D	r��Vn� 	
�

�
�

�

� n
�

�

Finally� to �nish the proof� we use the trivial bound� for s between r
and  r�

	��
�� D	r� � r��n
Z
b�r

jruj� � r��n
Z
b�s

jruj� �  n��D	s� �

and set

� � minf


log

�

�
�
 ��n

C�	

VM

Vn
� 	
�

�
�

�

�n
� �


 � �
g �	��
��

q�e�d�

Lemma ��
� will illustrate some of the advantages of working with
E as opposed to D� the main advantage comes from the form of the �rst
variation formula 	see the appendix��
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Di�erentiating 	��
� gives

E �	r� � r��n
Z
b
r

jruj�jrbj� 	� n�
E	r�

r
�	��
��

From this� we will see in Lemma ��
� that r��E	r� is nondecreasing� In
Section �� we will investigate other monotonicity properties of E�

Lemma ���
� �E grows at least quadratically�� Let u be a har�
monic function on a manifold M with nonnegative Ricci curvature�
Then r��E	r� is monotone nondecreasing�

Proof� First we note that for any subharmonic function v�

Jv	r� � r��n
Z
b
r

vjrbj	��
��

is monotone nondecreasing� this follows from

J �v	r� � r��n
Z
b�r

�v �	��
��

which uses Stokes� theorem and 	���� In particular� the above holds for
v � jruj� since this is subharmonic by the Bochner formula�

Applying the co�area formula to 	��
�� we obtain

r��Eu	r� � r�n
Z r

�
sn��Jv	s�ds �	��
��

Di�erentiating 	��
�� gives

	����
�
r��Eu

	�
� �nr�n��

Z r

�
sn��Jv	s�ds� r��Jv	r� �

Integrating the �rst term of 	���� by parts yields

�
r��Eu

	�
� r�n��

Z r

�
snJ �v	s�ds � � �	��
�

q�e�d�

If the frequency is locally bounded from above� we will get a lower
bound for the frequency� We will have two versions of this lower bound�
First� Lemma �� will give a crude lower bound for the frequency func�
tion and later� in Section �� Corollary ���� a more re�ned version�
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Lemma ����� �Lower bound of the frequency� crude version�� Let
M be an open manifold with nonnegative Ricci curvature and Euclidean
volume growth and let p � M be �xed� Given  � � there exist C �
C	n� � � and R � R	p� � � such that for any harmonic function u
with u	p� � �� we have for r � R�

I	r� � C ��D	 r� �	����

Furthermore� if U	s� � d for r � s �  r� we get a lower bound for
U	 r�� that is�

 ���d

C
� U	 r� �	����

Proof� By 	���� we can choose R � R	p� � � such that for r � R���� log br
���� � log �� �	����

which implies that the set fb � rg is contained in a ball of radius �p
�
r�

As in 	��

�� by Proposition ��� we have 	since  � �

sup
b�r

jruj� � C�

VM

 ��r��D	 r� �	����

where C� � C�	n� � ��
By integrating equation 	���� along geodesics starting at p and

using the fact that u	p� � �� we get

sup
b�r

juj� � �

�

C�

VM

 ��D	 r� �	����

The claim 	���� now follows from the weighted volume bound for the
level set� 	�
��� with C � �

�nC��
If U � d� then by 	�
���

I	 r� �  �dI	r� � C  �d��D	 r� �	����

and the second claim follows� q�e�d�

We are now prepared to give a uniform lower bound for the maximum
of the frequency on arbitrary annuli outside a compact set� In contrast
to Lemma �� the importance of this result is that it does not require
any control on the function�



harmonic functions with polynomial growth ��

Corollary ����� �Uniform lower bound of the maximum of the fre�
quency�� Let M be an open manifold with nonnegative Ricci curva�
ture and Euclidean volume growth and let p � M be �xed� There exist
CL � CL	n� � � and R � R	p� � � such that for any harmonic function
u with u	p� � �� we have for r � R�

max
r�s��r

U	s� � CL �	�����

Moreover� given � � �� there exists  L �  L	n� �� �  such that for any
harmonic function u with u	p� � �� we have for r � R�

max
r�s��Lr

U	s� � 	
� �� �	���
�

Proof� Suppose that d is a uniform upper bound for the frequency�
we will show that d cannot be too small� We apply Lemma �� with
 �  to get an R � R	p� � � and a C � C	n� � � such that for r � R�
if U	s� � d for s between r and r� then

U	r� � ���d

C
�	����

Hence� we have

d � ���d

C
� � �	�����

This implies that d � CL � CL	n� � ��
Moreover� with the same R � R	p�� for any  �  and the same

C � C	n� � �� if r � R and U	s� � 	
 � �� for s between r and  r�
then


 � U	 r� � 


C
 �� �	�����

This is not possible for  �  L �  L	n� �� � maxfC �
�� � g� q�e�d�

Remark ����� We will see in Section � that there are many large
annuli on which the frequency function is almost monotone� As a result�
Corollary ��� will imply a lower bound for the frequency function on
the outer parts of these annuli� See Section � for a precise version� and
��� for other results in this direction�

We will now show how to get control of the growth of D just from
a bound on the growth of I 	cf� Theorem ������ In later sections� this
will allow us to work with bounds only on the growth of I �
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Proposition ���
� �Bounding the growth of D by the growth of I��
Let M be an n�dimensional manifold with nonnegative Ricci curvature
and Euclidean volume growth� and let p � M be �xed� There exists
R � R	p� � � such that for r � R and any  � 
� if u is any harmonic
function on M with u	p� � � such that

I	 r� � C�I
�r


�
�	�����

then

D	 r� � C�C�D	r� �	�����

where C� � C�	n��

Proof� By Lemma �� we get an R � R	p� � � and a K � K	n� �
� such that for r � R�

I
�r


�
� KD	r� �	�����

From 	�
�� we have



Z ��r

�r

D	s�

s
� I	 r�� I	 r� � I	 r� �	�����

and hence



Z ��r

�r
sn��D	s� � 	 r�n�� I	 r� �	���
�

By de�nition� 	���� sn��D	s� is monotone nondecreasing� and therefore
	���
� yields

 	 r�n��D	 r� � n�� 	 r�n�� I	 r� �	����

Dividing through by 	 r�n�� gives

D	 r� � n��I	 r� �	�����

Combining 	������ 	����� and 	������ we obtain 	����� with C� � n��K�
q�e�d�
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	� Almost monotonicity of the frequency and almost

separation of variables

In this section we will show that when M has Euclidean volume
growth the frequency function behaves much like it did in the cone
case� In particular� we will �rst show that the frequency function is
almost monotone 	Proposition ��

�� This will allow us to show that
harmonic functions with polynomial growth come close to separating
variables on in�nitely many large annuli 	Theorem ������

Di�erentiating logW � we get

	logW 	r��� �
E�	r�
E	r�

� I �	r�
I	r�

�	��
�

which together with 	�
��� that is� with 	log I�� � r��U � implies

	logW 	r��� �
E�	r�
E	r�

� D	r�

rI	r�
�	���

From the �rst variation of energy 	Proposition A��� it follows that
	��
�� is equivalent to

E�	r� �r��n
Z
b
r

�����u�n
����
�

jrbj � r��n



Z
b�r

jruj��b�

� r��n
Z
b�r

Hess	b��	ru�ru� � 	� n�
E	r�

r
	����

�
F 	r�

r
�


r
E	r�� r��n

Z
b�r

Hess	b��	ru�ru� �

where the second equality follows from 	��� and 	����
Substituting 	���� for E�	r� into 	���� we get

	logW 	r��� �


r
�
F 	r�

rE	r�

�
r��n

R
b�r Hess	b

��	ru�ru�
E	r�

� D	r�

rI	r�
�

	����

Grouping terms� we rewrite 	���� as

	logW 	r��� �





r
� r��n

R
b�r Hess	b

��	ru�ru�
E	r�

�

�

�
F 	r�

rE	r�
� D	r�

rI	r�


�

	����



�� tobias h� colding � william p� minicozzi ii

By the divergence theorem� we can express D	r� as the boundary
integral

D	r� � r��n
Z
b
r

u
�u

�n
�	����

Applying the Cauchy�Schwarz inequality to 	����� we get

D	r�� �
�
r��n

Z
b
r

u�jrbj
��

r��n
Z
b
r

�����u�n
����
�

jrbj��
�

�I	r� r��n
Z
b
r

�����u�n
����
�

jrbj�� �	����

which is equivalent to�
r��n

R
b
r

�� �u
�n

��� jrbj��
D	r�

� D	r�

rI	r�

�
� � �	����

In view of 	����� we now rewrite 	���� as

	logW 	r��� �



r��n

R
b
r

�� �u
�n

��� jrbj��
D	r�

� D	r�

rI	r�

�

�





r
� r��n

R
b�r Hess	b

��	ru�ru�
E	r�

�
	����

�



F 	r�

rE	r�
� r��n

R
b
r

�� �u
�n

��� jrbj��
D	r�

�
�

De�ne the �rst term in brackets to be

	��
��
�
	logW 	r���

�ess
�



r��n

R
b
r

�� �u
�n

��� jrbj��
D	r�

� D	r�

rI	r�

�
�

note that by 	����� �	logW ���ess is nonnegative� To this point we have
not used any assumption on M other than the existence of a global
Green�s function� We will show that the remaining terms are small on
many large annuli if M has nonnegative Ricci curvature and Euclidean
volume growth� and u has polynomial growth�

Examples of ��� 	see Section 

� show that the frequency function is
no longer monotone under the assumptions of Theorem ���� However�
we will now prove almost monotonicity of the frequency function on
many large annuli�
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Proposition 	���� �Almost monotonicity of W �� Let Mn be an n�
dimensional manifold with nonnegative Ricci curvature and Euclidean
volume growth� Fix p � M � Given positive constants 	� �� and  � � 
�
there exists R � R	p� 	� �� �� � � such that if 
 �  �  �� r � R� and
u is any harmonic function on M with

D	 r� � 	D	r� �	��
�

then Z �r

r

minf	logW ��	t�� �gdt � �� �	��
��

In fact we will show that

Z �r

r

j	logW ��	t�� �	logW ��	t�
�
ess jdt � � �	��
��

Proof� Since the �rst term in 	���� is nonnegative� 	��
�� follows
from 	��
��� Therefore� it su�ces to bound the integrals of the second
and third lines in 	�����

We now recall some analytic facts� From the asymptotics of the
Green�s function and Section � of ���� given any � � �� there exists
R� � R�	p� �� � � such that for all r � R�� we have����log br

���� � � �	��
��

Z
b�r

��jrbj� � 
��� � ��Vol	b � r� �	��
��

and Z
b�r

��Hess	b��� g��� � ��Vol	b � r� �	��
��

where g is the metric tensor on M �

If we consider only � � � such that

exp	�� � �

�
�	��
��
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then 	��
�� implies that for s � R��

fb � sg 	 B
s

q
�
�

	p� �

Bs
p
�	p� 	 fb � sg �

	��
��

From Proposition ���� we get an R� � R�	p� 	� �� �� � � such that
D and E are equivalent� that is� for r � R� and s between r and  r�
we have ����log D	s�E	s�

���� � � �	����

We set R � maxfR�� R�g�
Note also that Lemma ��
� together with 	���� implies that D is

almost monotone� that is� for s between r and  r�

D	r� �E	r� exp	�� � E	s� exp	��

�D	s� exp	�� �	��
�

By the Bochner formula jruj� is subharmonic� Therefore Proposi�
tion �� and 	��
�� yield that for r � R�� jruj� is bounded by

sup
b��r

jruj� � sup
B
�r
p

�
�

�p�
jruj�

� C�Vol	B�r
p
�	p��

��
Z
B�r

p
��p�

jruj�	���

� C�VM
��
�
 r
p
�
��n Z

b���r
jruj�

� C  �� r��D	 r� �

where C� � C�	n� � � comes from Proposition �� and

C � C�V
��
M 	

p
���nn���

Bounding the normal derivative by the full gradient� and using the
weighted area bound for the level sets� 	�
��� we see that 	��� gives
a bound for F � For s between r and  r�

F 	s� � s��n
Z
b
s

�����u�n
����
�

jrbj � CnVM D	 r� �	����
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We now bound the second line of 	���� by�����s �
s��n

R
b�s Hess	b

��	ru�ru�
E	s�

�����
� 


s



s� supb�s jruj�

E	s�

��
s�n

Z
b�s

jHess	b��� gj


	����

�


s

�
E	s��D	s�

E	s�


�

From 	���� we get for s � R a bound on the above second term� We
will now bound the �rst term in the second line of 	����� From the
monotonicity of E 	see 	��
�� and 	���� we have for s between r and
 r�

s� supb�s jruj�
E	s�

� C
D	 r�

E	r�
� C	 exp	�� �	����

where the second inequality follows from 	���� and the hypothesis
	��
�� We use the estimate 	��
�� together with 	��
��� the Cauchy�
Schwarz inequality� and the Bishop volume comparison theorem to bound

s�n
Z
b�s

jHess	b��� gj � �Vn
�	
� exp	n�� �	����

Putting it all together� we get a bound on the second line of 	����� for
r � R and s between r and  r������s �

s��n
R
b�s Hess	b

��	ru�ru�
E	s�

�����
� 


s
�C	 exp	��� ��Vn

�	
� exp	n���	����

�


s
�exp	��� 
� �

Integrating 	���� yieldsZ �r

r

�����s �
s��n

R
b�s Hess	b

��	ru�ru�
E	s�

�����
� �C	 exp	��� ��Vn

�	
� exp	n��� log �

�  �exp	��� 
� log �	����

� C

�
�

�

�n��
�

Vn
� 	
� 	� log  � �  �exp	��� 
� log � �
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It remains to bound the third line of 	����� this must be done in an
integral sense� We have


F 	s�

sE	s�
� s��n

R
b
s

���u
�n

��� jrbj��
D	s�

�

�
s��n

R
b
s

�� �u
�n

��� 	jrbj � jrbj���
D	s�

	����

�


s

�
D	s��E	s�

E	s�


F 	s�

D	s�
�

Using 	���� and 	����� and then 	��
� and 	��
�� we get����D	s��E	s�

E	s�

���� F 	s�D	s�
�	exp	��� 
�C	 exp	��

�	exp	��� 
�C	 �
�
�	�����

A similar application of 	���� and then 	��
� and 	��
� yields

s��n
R
b
s

���u
�n

��� ��jrbj � jrbj����
D	s�

� C	s�n
Z
b
s

��jrbj � jrbj���� ds exp	��	���
�

� �

�
C	s�n

Z
b
s

��jrbj � jrbj���� ds �
By the co�area formula� we see thatZ �r

r

s�n
Z
b
s

��jrbj � jrbj���� ds � Z
fr�b��rg

b�n
��jrbj�� 
��

� r�n
Z
fb��rg

��jrbj�� 
��
� �

Vol	fb �  rg�
rn

	����

� �Vn
� 	
�  

n exp	n��

� �Vn
� 	
�  

n

�
�

�

�n
�

�

where the third to last inequality follows from 	��
��� and the second to
last from 	��
�� and the Bishop volume comparison theorem�
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Combining 	������ 	���
�� and 	����� we get an integral bound for
	����� Z �r

r



F 	s�

sE	s�
� s��n

R
b
s

���u
�n

��� jrbj��
D	s�

�

� �

�
C		exp	��� 
� log �	�����

�

�
�

�

�n��
�

C	Vn� 	
� 
n
� � �

To control the four terms from 	���� and 	������ we �rst choose

�� � min

��
�
 log �� � �



�C

�
�

�

� n��
�

Vn
� 	
� 	 log  �

���
�

�
�

�

�n��
�

� �C	Vn� 	
� 
n
� �
��
�
�	�����

Next� notice that for � � s � �
� log

�
� �

exp s � 
 �
Z s

�
exp t dt �

�
�

�

� �
�

s �	�����

therefore� choose �� by taking

	����� �� � min

�




log

�

�
� �

�
�

�
log �

��
� �

�

�

�
C	 log  �

���
�

Taking � � minf��� ��g� each of the four terms from 	���� and 	����� is
bounded by �

� � and the proposition now follows� q�e�d�

Corollary 	���� Let Mn be as in Proposition ���� and let p � M

be �xed� Given a positive constant � and 
 �  �� there exists R �
R	p� 	� �� �� � � such that if 
 �  �  �� r � R� and u is any
harmonic function on M satisfying

D	 r� � 	D	r� �	�����

then for all r � s � t �  r we have that

I	t� �
�
t

s

����	��d

I	s� �	�����

where d � W 	 r��
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Proof� This follows from Proposition ��

 together with 	�
�� and
the equivalence of E	r� and D	r� 	Proposition ����� q�e�d�

In light of Proposition ��

� the lower bounds for the maximum of
U from Section � can now be used to derive pointwise lower bounds for
the frequency on many annuli�

Corollary 	�	�� �Uniform lower bound of the frequency�� Let M
be a manifold with nonnegative Ricci curvature and Euclidean volume
growth� and let p �M be �xed� Given �

� � � � �� we let  L �  L	n� ��
be given by Corollary �
�� Given 	 � � and  � �  L� there exists
R � R	p� 	� �� �� � � such that if r � R�  L �  �  �� and u is any
harmonic function on M with u	p� � � and

D	 �r� � 	D	r� �	���
�

then for s between  r and  �r�

	
� ��� � U	s� �	����

Proof� From Corollary ���� there exists a R� � R�	p� � � such
that for r � R��

	
� �� � max
r�s��Lr

U	s� �	�����

Given � � �� Proposition ��

 and Proposition ��� yield an R� �
R�	p� 	� �� �

�� � � such that for r � R��Z ��r

r

minf	logW ��	t�� �gdt � �� �	�����

and for s between r and  �r�����log U	s�

W 	s�

���� � � �	�����

Combining 	����� and 	����� we get for r � s� � s� �  �r

U	s�� � e�W 	s�� � e��W 	s�� � e��U	s�� �	�����

The corollary now follows from 	����� and 	����� by choosing

� �



�
log


� �


� �� �	�����

and R � maxfR�� R�g� q�e�d�
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De�nition 	�	�� 	Almost separation of variables�� Suppose that
Mn is an open manifold� p � M � � � �� fr � b �  rg is an annulus�
and u is a function on fr � b �  rg� We say that u ��almost separates
variables on the annulus fr � b �  rg if there exists a function h �
R� R such that for any r � s� � s� �  r�

	�����

Z
fs��b�s�g

b�n
�
b
�u

�n
� h	b� u jrbj

��
� � Iu	s�� �

The next goal is to show that harmonic functions with polynomial
growth in fact almost separate variables on many large annuli� As in
the conical case� we will show that a harmonic function almost separates
variables by analyzing almost equality in the Cauchy�Schwarz inequality
which implied the positivity of �	logW ���ess� This term is small because
�	logW ��� is small and almost equal to �	logW ���ess by Proposition ��

�

We need some preliminary results which now follow�

Proposition 	���� �U almost constant implies u almost separates
variables�� Let Mn have nonnegative Ricci curvature and Euclidean
volume growth� and let p � M be �xed� Given �� d�� 	 � �� and  � � 
�
there exists � � �	d�� �� � � such that we have the following� there exists
R � R	p� 	� d�� �� �� � � such that if 
 �  �  �� r � R� and u is any
harmonic function on M satisfying

D	 r� � 	D	r� �	���
�

max
r�s��r

U	s� � d� �	����

and ����log
�
U	 r�

U	r�

����� � �


�	�����

then u ��almost separates variables on the annulus fr � b �  rg in the
sense of De�nition ����� In fact� we can take h	s� � U	s� and choose
� � � such that

� exp 	�� � �

d�
�	�����

Proof� Under the hypotheses� for each � � � there exists R� � �
such that for R� � r � s �  r� U	s� and W 	s� are almost equal and
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W 	s� is almost monotone� That is� given � � �� Proposition ��� and
Proposition ��

 guarantee the existence of an R� � R�	p� 	� �� �� � �
such that for R� � r � s �  r�

����log D	s�E	s�

���� � �


�	�����

and

Z �r

r

��	logW ��	t�� �	logW ��	s�
�ess��dt � �


�	�����

Note that 	����� is equivalent to having for r � s �  r
����log U	s�

W 	s�

���� � �


�	�����

Further observe that 	����� implies by Lemma ��
� that if s � s�

	����� D	s� � exp

�
�



�
E	s� � exp

�
�



�
E	s�� � exp 	��D	s�� �

Therefore� by the co�area formula� we have for r � s� � s� �  r�
Z
fs��b�s�g

b�n
�
b
�u

�n
� U	b� u jrbj

��

�

Z s�

s�

s�n
Z
b
s

�
s
�u

�n
jrbj� �

� � U	s� u jrbj ��
��

�

Z s�

s�



s��n

Z
b
s

�����u�n
����
�

jrbj�� � s��nU	s�
Z
b
s

u
�u

�n

�U�	s� s�n
Z
b
s

u�jrbj


�





Z s�

s�

D	s�
�
	logW ��	s�

�ess
�




exp 	�� D	s��

Z �r

r

�
	logW ��	s�

�ess
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� 



exp 	�� D	s��

Z �r

r

	logW ��	s�

�




exp 	�� D	s��

Z �r

r

j	logW ��	s�� �	logW ��	s�
�ess j

�




exp 	�� D	s��

�
log

�
W 	 r�

W 	r�

�
�
�




	�����

�




exp 	�� D	s��

�
log

�
U	 r�

U	r�

�
�
�


�


� exp 	�� U	s�� I	s�� �

� � exp 	�� d� I	s�� �

The claim now follows by choosing � by 	����� and then taking R � R��
q�e�d�

As an application of the techniques developed� we give now an
asymptotic description of harmonic functions with polynomial growth
on manifolds with nonnegative Ricci curvature and Euclidean volume
growth� Namely� we show that a harmonic function with polynomial
growth on such a manifold almost separates variables on an in�nite se�
quence of large annuli� By improving the proof� we will in Section 
�
give a generalization of this for a set of independent harmonic functions�
This generalization will be a key step in the proof of Theorem ����

Since it is the generalization of Theorem ���� given in Section 
��
and not Theorem ���� itself� that we need in the proof of Theorem ���
the reader can choose to skip Theorem �����

Theorem 	�
�� �Asymptotic description of harmonic functions with
polynomial growth�� Let Mn be as in Proposition ����� and u � Hd	M��
Given  �  and � � �� there exists a sequence rj � � such that u
��almost separates variables on the annulus Arj��rj �

Proof� We can assume that u	p� � �� By the Cheng�Yau gradient
estimate� jruj grows polynomially of order at most d� 
� and d � 
 if
u is nonconstant� Combining this with the Bishop volume comparison
theorem� we see that D	r� grows polynomially of order at most d�

Choose an �� � � such that

�� exp �� �
�


d
�	���
�

Let  L �  L	n�
�
�� �  and R� � R�	p� � � be given by Corollary

���� Then for any r � R�� the maximum of U on the interval �r� Lr�
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is at least �
� � Set  � � maxf � Lg� Choose m � n and � � � so that

� �
��
�
�

exp � �
�

�
�

	����

and

log �d

m�  �
��
�
�	�����

Since D grows polynomially of order at most d and

d �
�md

m� 

�	�����

there is a sequence ri �� such that

D	 �m	�
� ri� �  

dm
� D	ri� �	�����

	cf� Corollary �����
By Proposition ��

 and Proposition ���� we get an

R� � R�	p� 
dm
� � �� �m	�

� � � �

such that for ri � R��Z ��m
� ri

ri

minf	logW ��	t�� �gdt � �� �	�����

and for s between ri and  
�m
� ri�����log D	s�E	s�

���� � � �	�����

Set R � maxfR�� R�g�
From 	�
��� we have

D	 �m
� ri� �  dm	n��

� D	ri� �	�����

By the de�nition of U and 	�
���Z ��m
� ri

ri

U	s�

s
ds � log

�
D	 �m

� ri�

D	ri�

�

� log
�
U	 �m

� ri�

U	ri�

�
�	�dm� n � � log � � ��

��dm log	 �� �

	�����
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where the inequality uses 	����� 	������ and 	������ Since U is nonnega�
tive� the bound 	����� implies that for some si between  

m
� ri and  

�m
� ri

we have

U	si� � �d �	�����

By 	����� and the ��almost monotonicity ofW on the interval �ri� 
�m
� ri��

	������ the bound 	����� implies that for ri � R�� and s between ri and
 m� ri�

W 	s� � �d exp	�� � �d �	���
�

where the last inequality follows from 	����� By the ��almost mono�
tonicity of W on the interval �ri� �m

� ri�� 	������ the choice of  �� and
	������ we have for r � R and s between  �ri and  

m
� ri�





� 

�
exp	��� � W 	s� �	����

where again the last inequality follows from 	����� Combining 	���
�
and 	���� yields that for s between  �ri and  

m
� ri�





�W 	s� � �d �	�����

Again by the ��almost monotonicity ofW on the interval �ri� 
�m
� ri��

	������ together with 	������ we see that for ri � R� there exists an
integer  � ki � m such that

log

�
W 	 ki� ri�

W 	 ki��� ri�

�
� � � log 	� d�

m�  �
��

�	�����

By 	����� and 	������ we conclude that

log

�
U	 ki� ri�

U	 ki��� ri�

�
� �� �	�����

From 	����� and 	����� it is seen that for s between  �ri and  
m
� ri�

�

�
� U	s� � �d �	�����
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which implies

log

�
D	 ki	�� ri�

D	 ki��� ri�

�
� log

�
U	 ki	�� ri�

U	 ki��� ri�

�

�

Z �
ki��
� ri

�
ki��
� ri

U	s�

s
ds

� log	
� d� � � d log	 �� �

	�����

We can now apply Proposition ���� to get an

R� � R�	p� 
�d 
��d
� � �d� �� �

�� � �

such that for ri � maxfR�R�g� u ��almost separates variables on the
annulus f ki��� ri � b �  ki� rig� Finally� we note that when u ��almost
separates variables it also does so on all subannuli� and the claim follows
since  �  �� q�e�d�

�� Preserving almost orthogonality

In this section� we will use the previous work on almost separation
of variables to show how to preserve the almost orthogonality condition
for harmonic functions on an annulus� The importance of the results of
this section is that it will allow us to show that two harmonic functions
u and v have a de�nite separation at b � r

provided that�

	
� they have a de�nite separation at b �  r�
	� the growth of u and v from b � r to b �  r has a de�nite bound�
	�� we have good control of v between b � r and b �  r� 	In

fact v needs to be very close to separating variables on the annulus
fr � b �  rg��

We continue to takeMn to be an n�dimensional manifold with non�
negative Ricci curvature and Euclidean volume growth�

Proposition ���� �Almost preserving orthogonality�� Fix p � M �
 � 
� and suppose that u and v are harmonic functions on the an�
nulus fr � b �  rg� v ��almost separates variables on fr � b �  rg�
r � s� �  r� and

s�
��n

Z
b
s�

uvjrbj � � �	���
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Then for r � s� � s������s���n
Z
b
s�

uvjrbj
����
�

� � �

�
s�
s�

��d	�

Iu	s�� Iv	s�� �	����

where d � maxfhv	s� j s� � s � s�g� and hv is as in De�nition �����

Proof� By di�erentiation� we get

d

ds

�
s��n

Z
b
s

uvjrbj

�	
� n�s�n

Z
b
s

uvjrbj

� s��n
Z
b
s

�
v
�u

�s
� u

�v

�s

�
jrbj	����

� s��n
Z
b
s

uv
�b

jrbj �

using equation 	���� we have

d

ds

�
s��n

Z
b
s

uvjrbj

�s��n

Z
b
s

�
v
�u

�s
� u

�v

�s

�
jrbj

�s��n
Z
b
s

u
�v

�n
�	����

where the second equality follows from Green�s formula together with
the assumption that u and v are harmonic� De�ne err	s� by

	���� s
d

ds

�
s��n

Z
b
s

uvjrbj

�  hv	s�

�
s��n

Z
b
s

uvjrbj

� err	s� �

By 	���� and the de�nition 	����� we get

jerr	s�j � s��n
����s
Z
b
s

u
�v

�n
� hv	s�

Z
b
s

uvjrbj
���� �	����

It follows from the Cauchy�Schwarz inequality that����s
Z
b
s

u
�v

�n
� hv	s�

Z
b
s

uvjrbj
����
�

�
�Z

b
s
juj
����s �v�n � hv	s� vjrbj

����
��

�
Z
b
s

u�jrbj
Z
b
s

�
s
�v

�n
� hv	s� vjrbj

�� 


jrbj	����

� sn��Iu	s�
Z
b
s

�
s
�v

�n
� hv	s� vjrbj

�� 


jrbj �
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Combining equations 	���� and 	���� gives

	���� s��jerr	s�j� � �Iu	s� s
�n
Z
b
s

�
s
�v

�n
� hv	s� vjrbj

�� 


jrbj �

Integrating equation 	����� by the co�area formula and the monotonicity
of I 	speci�cally Iu	s� � Iu	t� for s � t�� for r � s� � t �  r� we have

Z t

s�

s��jerr	s�j�ds � � Iu	t�
Z
fs��b�tg

b�n
�
b
�v

�n
� hv	b� vjrbj

��
� ��Iu	t�Iv	t� �	��
��

Here the second inequality follows since v ��almost separates variables
on the annulus fr � b �  rg�

If we now write

g	s� � s��n
Z
b
s

uvjrbj �	��

�

we see that by assumption

g	s�� � � �	��
�

and that 	���� implies

sjg�	s�j � d jg	s�j� jerr	s�j �	��
��

It remains to get an upper bound for jg	s��j� For ease of exposition�
we set

a� � ��Iu	s��Iv	s�� �	��
��

If jg	s��j � a� then we are done� Suppose therefore that jg	s��j � a�
and let s� be the smallest s � s� such that jg	s�j � a 	such an s� � s�
must exist since g	s�� � ��� Replacing g with �g if necessary� we have
for s� � s � s��

g	s� � a �	��
��

From 	��
�� and 	��
�� it follows that for s� � s � s��

s
��	log g���� � d � jerr	s�j

a
�	��
��
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Now integrating 	��
�� leads to

	��
�� log g	s��� log g	s�� �
Z s�

s�

�
d

s
�
jerr	s�j
as

�
ds �

By absorbing inequality xy � ��x� � ���y� we get


jerr	s�j

a
� 




� jerr	s�j
a

��

�  �	��
��

Using 	��
�� and substituting g	s�� � a� from 	��
�� we obtain

log g	s�� � log a� 	d� 
� log s�
s�

�



�
a��

Z s�

s�

s��jerr	s�j�ds �
	��
��

Combining 	��
�� with the estimate 	��
�� gives

log g	s�� � log a� 	d� 
� log s�
s�

�



�
a����Iu	s��Iv	s��

� log a� 	d� 
� log
s�
s�
�



�
�

Exponentiating 	��
�� yields

g	s�� �
�
s�
s�

��d	�

a exp



�
�	����

and the result follows since s� � s� and exp
�
� � � q�e�d�

For the applications it is crucial that the � in Proposition ��
 is
chosen small compared with  and the growth of Iu and Iv from b � r
to b �  r� Namely given this then Proposition ��
 implies that u and
v are almost orthogonal at b � r in the following sense�

De�nition ����� 	Almost orthogonality�� Let u and v be harmonic
functions de�ned in a neighborhood of b � s� Given � � �� we say that
u and v are ��almost orthogonal at s if

s��n
����
Z
b
s

uvjrbj
���� � � I

�
�
u 	s� I

�
�
v 	s� �	����
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Noting that any linear functional on a Hilbert space is determined
by its kernel and its action on any element orthogonal to the kernel� we
see that Proposition ��
 has the following simple corollary�

Corollary ���	� �Almost preserving the inner product�� If u and v
are harmonic functions and v ��almost separates variables on
fr � b �  rg� then for r � s� � s� �  r����s���n

Z
b
s�

uvjrbj � exp
�


Z s�

s�

h	s�

s
ds

�
s�

��n
Z
b
s�

uvjrbj
�����

� � �

�
s�
s�

��d	�

Iu	s�� Iv	s�� �	����

where

d � max
s��s�s�

hv	s� �	����

Proof� Orthogonally decompose u into

u � u� � av �	����

where

s�
��n

Z
b
s�

u�vjrbj � � �	����

We apply Proposition ��
 to u�� and use the fact that v ��almost sepa�
rates variables to control the remainder� q�e�d�

We note that in the applications we will use Proposition ��
 and not
Corollary ����


� Bounding the number of almost orthonormal

Lipschitz functions

In this section we will bound the dimension of the space of almost L��
orthonormal functions with a given Lipschitz bound under very general
conditions�

De�nition 
��� Given 	X� d� a compact metric space� de�ne L	X�
to be the set of Lipschitz functions on X � We set

Lk	X� � fu � L	X� jLip	u� � kg�
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De�nition 
��� 	
�almost orthonormal functions�� Let 	X� �� be a
measure space with a probability measure� �� and suppose that f�� � � � � fm
are L� functions on X � We say that the fi are 
�almost orthonormal ifZ

X

f�i � 
 �	����

and for i 
� j ����
Z
X

fifj

���� � 
 �	����

In the next proposition� we think of r as the scaling factor and D�

and k as the constants�

Proposition 
��� Let 	X� d� �� be a compact metric space with a
probability measure� �� and diam	X� � D�r� Given k � �� there exist
at most N �
 �

��almost orthonormal functions in Lkr��	X�� where N �
N 	D�� k� �� and � is the maximal number of disjoint balls of radius r

��k �

Proof� Let f�� � � � � fm be such functions� We let B�� � � � � B� be a
maximal disjoint covering of X by balls of radius r

��k � x�� � � � � x� denote
the centers of the balls� It follows from maximality that double the
balls covers X � We now partition X into � 	disjoint� subsets S�� � � � � S� �
where Bi 	 Si and Si is contained in twice Bi�

Let 	P� ��� denote the set of points fxjg with probability measure
��� where ��	xj� � �	Sj�� We can therefore identify functions on P with
functions on X which are constant on each Sj �

Since the average of each f�i is one and we have bounds on the
Lipschitz constant and diameter�

sup
X

jfij � kD� � 
 �	����

Let � denote the set f s
�� j s � Z � jsj � 
�	kD� � 
�g� We will now

construct an injective mapM from the orthonormal set of functions to
the set of maps from P 	the points fxig� to �� let M	fi�	xj� � � be
any closest point of � to fi	xj� 	there are at most two possibilities�� By
construction� for all y � Sj �

jfi	y��M	fi�	xj�j � jfi	y�� fi	xj�j� jfi	xj��M	fi�	xj�j
� 


�
�



�
�




�
�	����
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and hence �Z
X

jfi �M	fi�j�
� �

�

� 



�
�	����

By the triangle inequality together with 	����� we get for i 
� j�

�Z
X

jfi � fj j�
� �

�

�
�Z

X

jM	fi��M	fj�j�
� �

�

�
�Z

X

jfi �M	fi�j�
� �

�

�

�Z
X

jfj �M	fj�j�
� �

�

	����

� 


�
�

Furthermore� since the fi are
�
� �almost orthonormal� we haveZ
X

jfij� � 
 �	��
��

and for i 
� j� ����
Z
X

fifj

���� � 



�	��

�

Consequently� for i 
� j�


 �

�Z
X

jfi � fj j�
� �

�

�	��
�

Combining 	���� and 	��
� yields that for i 
� j�

� �
�

�
�

�Z
X

jM	fi��M	fj�j�
� �

�

�	��
��

Hence� M is injective� The proposition follows by counting the cardi�
nality of the set of maps between two �nite point sets 	in fact� N �
	�	kD�� 
� � 
�

��� q�e�d�

Remark 
��	� 	Divergence of eigenvalues�� Given a gradient bound
C	�� for all eigenfunctions with eigenvalues at most �� that is

sup
X

jruj � C	�� sup
X

juj �	��
��
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as is the case in the Cheng�Li�Yau gradient estimate 	see �
��� ����� and
������ Proposition ��� gives a de�nite rate of divergence of the eigen�
values 	compare ���� and Weyl�s asymptotic formula�� In applications
X � fb � rg and the functions will be the restriction of harmonic
functions on M with bounded growth� Moreover the restriction of the
harmonic functions will be approximately eigenfunctions with eigenval�
ues given in terms of the frequency� Due to the fact that these functions
are restrictions of harmonic functions on M we have a gradient bound
already on M � This bound is given in terms of the frequency� For this
reason we need not deal with spectral properties of X �

�� Growth properties of functions of one variable

In this section� we will prove some elementary results for functions
of a single variable with polynomial growth�

The �rst two results 	Lemma ��
 and Corollary ���� show the exis�
tence of in�nitely many annuli with bounded growth�

The basic idea is that for any set of k functions with polynomial
growth of degree at most d� we can �nd a subset of k functions and
in�nitely many annuli for which the degree of growth from the inner
radius to the outer radius of each of the functions in the subset is at
most d�

We will think of this elementary fact as a weak version of a uniform
Harnack inequality for a set of functions with polynomial growth�

This simple idea of restricting attention to a large subset in order to
make the constants independent of the number of functions in the set
will be used over and over again�

In the next section� we will produce functions of one variable with
the properties of the functions of this section�

The main results of this section are Corollary ��� and Corollary ��
�
Whereas Corollary ��� will be used to start the proof of Theorem ���
	see Corollary ��
��� and Corollary ��
 in the inductive step in the
proof of Theorem ���� see Section ��

Lemma ���� Suppose that f�� � � � � fl are positive nondecreasing func�
tions on 	���� such that for some d �K � � and all i�

fi	r� � K	rd � 
� �	���

For all  � 
� k � l� and any C �  
ld

l�k�� � there exist k of these
functions f�� � � � � � f�k and in�nitely many integers� m � 
� such that
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for i � 
� � � � � k�

f�i	 
m	�� � Cf�i	 

m� �	����

Proof� We will show that there are in�nitely many m such that
there is some rank k subset of ffig� where the subset could vary with
m� satisfying 	����� This will su�ce to prove the lemma� since there are
only �nitely many rank k subsets of the l functions� one of these rank
k subsets must have been repeated in�nitely often�

Set

g	x� �
lY

i
�

fi	x� �	����

note that

g	r� � Kl	rd � 
�l �	����

and g is a positive nondecreasing function� Assume that there are only
�nitely many such m and let m� � 
 be the largest� Then for all j � 

we have

g	 m�	j� � Cl�k	�g	 m�	j��� �	����

Iterating this gives

g	 m�	j� � Cj�l�k	��g	 m�� �	����

From the upper bound on g� equation 	����� we have for all j � m� that

!c
�
 j
	dl � Cj�l�k	��g	 m�� �	����

where !c � !c	l�m�� � K�� Since C �  
ld

l�k�� and g	 m�� � � this is
impossible� yielding a contradiction� q�e�d�

Corollary ���� �Weak version of a uniform Harnack inequality for
a set of functions with polynomial growth�� Suppose that f�� � � � � f�k are
positive nondecreasing functions on 	���� such that for some d �K � �
and all i�

fi	r� � K	rd � 
� �	��
��

For all  � 
� there exist k functions f�� � � � � � f�k and in�nitely many
integers� m � 
� such that for i � 
� � � � � k�

f�i	 
m	�� �  �df�i	 

m� �	��

�
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Proof� This is an immediate consequence of Lemma ��
 with l � k�
q�e�d�

Remark ����� That the upper bound in Corollary ��� for the de�
gree of growth of f�� � � � � � f�k from  m to  m	� can be made indepen�
dent of k�  � and K is crucial for the applications�

In the proof of Theorem ���� we will use Corollary ��� to get an
initial annulus on which we have some growth control 	see Corollary
��
��� Henceforth� we will work on an annulus where we have this
control on the growth� and then produce subannuli where we have even
better control of the growth� This better control is needed in the proof�
see Remark ����

Lemma ����� Given  � 
� suppose that f is a positive nonde�
creasing function on �r� mr� such that for some d� � ��

f	 mr� �  d�mf	r� �	��
��

Then for d � d�
m

m�� � there exists some j with � � j � m�  such that

f	 j	�r� �  df	 jr�	��
��

and

f	 j	�r� �  �df	 jr� �	��
��

Proof� Suppose that the lemma is false� then for every j� we have
either

f	 j	�r� �  df	 jr�	��
��

or

f	 j	�r� �  �df	 jr� �	��
��

In particular� either for k � 
 or for k � � we must have that

f	 kr� �  kdf	r� �	��
��

Continuing inductively� by 	��
�� and 	��
�� we get 	��
�� for k � m

or for k � m � 
� Hence the monotonicity of f � together with 	��
��
implies that

f	 mr� �  �m���df	r� �	����
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By the assumption 	��
��� and the de�nition of d� 	���� yields the
desired contradiction� q�e�d�

Lemma ��
� has the following easy corollary�

Corollary ����� �Double growth condition�� Given  � 
� suppose
that f�� � � � � fkm are positive nondecreasing functions on �r� mr� such
that for some d� � �� and all i � 
� � � � � km�

fi	 
mr� �  d�mfi	r� �	���

Then for d � d�
m

m�� � there exist k functions f�� � � � � � f�k and some j

with � � j � m�  such that for i � 
� � � � � k�

f�i	 
j	�r� �  df�i	 jr�	����

and

f�i	 
j	�r� �  �df�i	 

jr� �	����

Proof� Applying Lemma ��
� to the functions fi� for each i we get
a ji such that fi satis�es 	���� and 	���� with j � ji� Since each ji
must lie in the set �� � � � � 	m� � and there are km of them� at least k
of ji must be equal� q�e�d�

Remark ����� In the application 	Proposition ��
� of Corollary
��
 we will only use 	���� for f�� � In contrast 	���� will be used
for all f�i with i � 
� The reason for this is that in the inductive step
of Theorem ��� we will need to �nd an annulus and a subset ff�ig of
ffig such that these f�i have almost the same degree of growth on this
annulus as on a certain larger annulus� and u�� has bounded frequency
	the bound must be uniform in terms of the polynomial rate of growth
of u���� To achieve this� we apply Corollary ��
 to �nd a pair of annuli
one contained in the other and so that we have controlled growth on
both annuli for f�� � The bounded growth on the larger annulus and the
almost monotonicity of the frequency then imply the desired frequency
bound for u�� on the interior annulus� see Section � for further details�

�� Constructing independent harmonic functions with

good properties from given ones

In this section� given a linearly independent set of functions in Hd

we will construct functions of one variable which re�ect the growth and
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independence properties of this set� In particular� here we shall establish
that these functions of one variable satisfy the conditions of Section ��

The results of this section rely heavily on the properties of harmonic
functions on manifolds with nonnegative Ricci curvature� we use in par�
ticular that Iu is monotone nondecreasing for all harmonic functions�

In Section 
�� we will use these results to show that given linearly in�
dependent harmonic functions with polynomial growth we can produce
annuli and harmonic functions on these annuli which are separated and
have controlled growth�

We begin with two de�nitions� In the �rst de�nition we construct
the functions whose growth properties will be studied�

De�nition ���� 	wi�r and fi�� Suppose that u�� � � � � uk are linearly
independent harmonic functions� For each r � � we will now de�ne an
orthogonal basis wi�r with respect to the inner product

r��n
Z
b
r

uvjrbj �	���

and functions fi� Set w��r � w� � u� and f�	r� � Iu�	r�� De�ne wi�r by
requiring it to be orthogonal to uj for j � i with respect to the inner
product 	��� and so that on fb � rg we have

ui �
i��X
j
�

�ji	r�uj � wi�r �	����

Set

fi	r� � r��n
Z
b
r

w�
i�rjrbj �	����

De�nition ���� 	Barrier�� We will say that a function f is a 	left�
barrier for a function g at r if f	r� � g	r� and for s � r� f	s� � g	s��

We will use the barrier property to conclude that the growth of g
from s to r is not larger than the growth of f from s to r 	cf� Remark
��
���

In the next proposition� we will establish some key properties of the
functions fi from De�nition ��
�

Proposition ��
� �Properties of fi�� If u�� � � � � uk � Hd	M� are
linearly independent� then the fi from De�nition ��� have the following
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three properties� There exists a constant K � � �depending on the set
fuig� such that

fi	r� � K	r�d � 
� �	����

fi is a positive nondecreasing function�	����

and

fi is a barrier for Iwi�r
at r�	����

Proof� Note �rst that

fi	r� � Iui	r� �	��
��

Furthermore� for s � r

fi	s� � s��n
Z
b
s

������ui �
i��X
j
�

�ji	s�uj

������
�

jrbj � Iwi�s
	s�

� s��n
Z
b
s

������ui �
i��X
j
�

�ji	r�uj

������
�

jrbj � Iwi�r
	s�	��

�

� r��n
Z
b
r

������ui �
i��X
j
�

�ji	r�uj

������
�

jrbj � Iwi�r
	r�

� fi	r� �

where the �rst inequality of 	��

� follows from the orthogonality of wi�r

to uj for j � i� and the second inequality from the monotonicity of I
for harmonic functions 	see 	�
��� Since ui are linearly independent�
by 	��

� we get 	�����

Using 	��

�� we also see that fi is a barrier for Iwi�r
at r� this shows

	�����
Finally� we shall verify 	����� It follows from the asymptotics of the

Green�s function that
�� r
b

�� is bounded and therefore ui � Hd implies that
there exists a constant "K such that jui	x�j � "K	b	x�d � 
�� Using the
C� bound on ui and the weighted volume bound for the level set b � r�
	�
��� we get

fi	r� �Iui	r� � "K�	rd � 
��Iu��	r�

� "K�	r�d � 
�nVn
� 	
� �

	��
�
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If we set K �  "K�nVn
�	
� then we obtain 	����� q�e�d�

Although we will not use it� we note that since log fi is a barrier for
log Iwi

� we also get that

	log fi�
� 	r� � �log Iwi�r

	�
	r� � 

Uwi�r
	r�

r
�	��
��

The following corollary of Corollary ��� and the properties of the fi
will be used to get initial control of the growth in the proof of Theorem
����

Corollary ���	� Suppose that u�� � � � � u�k � Hd	M� are linearly in�
dependent� Given  � 
� then there exist a subset f�� � � � � � f�k and
in�nitely many m such that for i � 
� � � � � k

f�i	 
m	�� �  �df�i	 

m� �	��
��

Proof� This follows immediately by combining Corollary ��� and
Proposition ���� q�e�d�

Remark ���
� We will continue to work with the functions fi�
However since the way they are de�ned is a bit abstract� we will try to
clarify their usefulness by explaining a particular consequence of Corol�
lary ��
�� The reader should note however that this consequence will not
be used later on� and rather we will need to use more of the information
that the functions fi carry�

Given a set of k linearly independent functions fuig of Hd� Corol�
lary ��
� allows us to �nd in�nitely many m for which there exist k
orthonormal 	at b �  m	�� harmonic functions 	in fact in the span of
fuig�� Further� these k functions have growth of degree at most d on
the annulus between b �  m and b �  m	�� Note however that for
di�erent m the set of harmonic functions with growth of degree at most
d may be di�erent� That is� from Corollary ��
� together with 	����
we have the following�

Under the assumptions of Corollary ��
� we have in�nitely many m
such that for i � 
� � � � � k�

Iw
�i��

m�� 	 
m	�� �  �dIw

�i��
m�� 	 

m��	��
��

and for 
 � i � j � kZ
b
�m��

w�i��m��w�j��m�� jrbj � � �	��
��
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Note also that if we could show that these k harmonic functions were
orthogonal at  m 	and not at  m	�� then� after applying the gradient
estimate together with the meanvalue inequality� Theorem ��� would
follow immediately from the results of Section ��

�� Towards the inductive step

In this section we will use the results of Sections � and � to show
a result 	Proposition ��
� that will be used in the inductive step of
Theorem ����

Given a large annulus and a set of independent harmonic functions
fuig such that the corresponding functions fi 	see Section �� grow poly�
nomially of order at most d� on this annulus� we show how to get

	a� a subset i�

	b� a subannulus�

	c� a nonconstant harmonic function u in the span of fuj j j � �g�
	d� a constant d � d�� and

	e� a larger subannulus�

such that on this subannulus 	b�

	
� f�i grows polynomially of order at most d�
	� �

� � Uu � d on double the subannulus� and
	�� Uu is almost constant�

and on the larger subannulus 	e�

	i� u is orthogonal to fuj j j � �g at the outer radius� and
	ii� Iu grows polynomially of order at most d�

It will be important that we will be able to take d very close to d�
and Uu very close to being constant if we are willing to go to a relatively
small subset of the functions and a relatively small subannulus� In the
applications� Proposition ���� together with 	� and 	�� will allow us
to conclude that this u is very close to separating variables on this
subannulus� This together with 	i�� 	ii�� and Proposition ��
 will allow
us to conclude that the harmonic functions that we de�ne inductively
in this way are almost orthogonal on a subannulus�

We will now make this precise in the following proposition�

Proposition ���� �Towards the inductive step of Theorem ���� Let
m � �� "m � ��  �  L	n�

�
� � � and d� � 
 be given� Here  L	n�

�
�
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is given by Corollary �
�� Set

d � d�
m

m� 

"m

"m� ��p "m �	���

There exists R � R	p� "m� d�� � � � such that if r � R and f�� � � � � flm �m

are as in De�nition ��� where ui	p� � � and

fi	 
m �mr� �  d�m �mfi	r�	����

for all i� then we have the following�

There exist l functions f�� � � � � � f�l and integers h and j with
� � h � m�  and "mh � j � "m	h� 
�� 
 such that for i � � � � � � l�

f�i	 
j	�r� �  df�i	 jr� �	����

and setting u � w���� �m�h��	r� we have for  jr � s �  j	�r�





� Uu	s� � d �	����

Iu	 
�m�h	��r� �  �d �mIu	 

�mhr� �	����

and ����log Uu	 j	�r�Uu	 jr�

���� � log	�d�p
"m

�	����

Proof� First� we apply Corollary ��
 to get l "m functions
f�� � � � � � f�l �m such that for some h with � � h � m� and i � 
� � � � � l "m�

f�i	 
�m�h	��r� �  d� �mf�i	 �mhr�	����

and

f�i	 
�m�h	��r� �  �d� �mf�i	 

�mhr� �	����

where d� �
m

m��d�� Note that we will only use 	���� for i � 
 and 	����
only for i � 
� Set u � w���� �m�h��	r and � � ��� From the barrier
property� 	����� it follows that 	���� implies

	��
�� Iu	 
�m�h	��r� �  �d� �mIu	 

�mhr� �  �d �mIu	 
�mhr� �
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In particular by Proposition ���� 	noting that  � �� there exists
R� � R�	p� � � such that for r � R��

Du	 
�m�h	����r� � C� 

�d� �mDu	 
�mh	�r�

� C� 
�d� �mDu	 

�mh	�r� �
	��

�

where C� � C�	n� � ��
Set

� � min

�



�
log

�

�
�



�
log

�

�
�
log ��

�


p
"m

�
�	��
�

By Proposition ��

� Proposition ���� and 	��

� we can choose

R� � R�	p� C� 
�d� �m� �� ��m��� � R� so large so that for r � R� and

 �mh	�r � s �  �m�h	����r� ����log Du	s�

Eu	s�

���� � �	��
��

and Z � �m�h��	��r

� �mh��r

minf	logWu�
�	t�� �gdt � �� �	��
��

Note that 	��
�� is equivalent to that for  �mh	�r � s �  �m�h	����r����log Uu	s�

Wu	s�

���� � � �	��
��

From 	��
�� we have for  �mh	�r � s � t �  �m�h	����r�

Wu	s� � e
�Wu	t� �	��
��

which together with 	��
�� implies that for  �mh	�r � s � t �  �m�h	����r

Uu	s� � e
�Wu	s� � e

��Wu	t� � e
��Uu	t� �	��
��

Since Iu is nondecreasing� from 	��
�� it follows that

Iu	 
�m�h	����r� �Iu	 �m�h	��r�

� �d� �mIu	 
�mhr�	��
��

� �d� �mIu	 
�m�h	��r� �
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By 	�
�� and 	��
��� there exists some s� with

 �m�h	��r � s� �  �m�h	����r

such that

Uu	s�� � "m

"m� d� �
�

�
d� �	��
��

Combining 	��
�� and 	��
�� we see that� for  �mh	�r � s �  �m�h	��r�

Uu	s� � e
��U	s�� � e

�� �

�
d� � d� �	����

By Corollary ��� we can choose R� � R�	p� � � so large that if
r � R� then there exists a s� satisfying

 �mh	�r � s� �  L	n� 
�
� �mh	�r �  �mh	�r

with

�

�
� Uu	s�� �	��
�

We now set R � maxfR�� R�g� By 	��
� and 	��
�� we have that for
r � R and  �mh	�r � s �  �m�h	��r





� e��� �

�
� e���U	s�� � Uu	s� �	���

Combining 	���� and 	��� we get that for  �mh	�r � s �  �m�h	��r�





� Uu	s� � d� �	����

Note that 	���� implies that for  �mh	�r � s � t �  �m�h	��r�

����log Uu	s�Uu	t�

���� � log	�d�� �	����

Consider the 	 "m� �� subintervals given by  �mh	jr to  �mh	j	�r for
j � � � � � � "m � � From 	��
�� and 	���� it follows that there exist
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at least 	 "m� � � p "m� subintervals on which the variation is less than
log�d��p

�m
� That is�

�m��X
j
�

����log Wu	 
�mh	j	�r�

Wu	 �mh	jr�

����
�

�m��X
j
�

log
Wu	 �mh	j	�r�

Wu	 �mh	jr�

� 
�m��X
j
�

min

�
log

Wu	 
�mh	j	�r�

Wu	 �mh	jr�
� �

�

� log Wu	 �m�h	����r�
Wu	 �mh	�r�

	����

� 
Z � �m�h��	��r

� �mh��r

minf	logWu�
�	t�� �gdt

� log
Uu	 

�m�h	����r�
Uu	 �mh	�r�

� �� � log	�d�� � ��

� log	�d�� � log �
�
� log

�
�


d�

�
�

By 	��
�� and 	����� there exist at least 	 "m� ��p "m� many j between
 and "m�  such that����log Uu	 h �m	j	��

Uu	 h �m	j�

���� �
����log Wu	 h �m	j	��

Wu	 h �m	j�

����� �
�
log	��d��p

"m
� � � log	��d��p

"m
�
log ��

�p
"m

	����

�
log	�d��p

"m
�

We will call such intervals good�
We now consider the restriction of the ff�ig to the union of the

good intervals� By 	����� these restricted functions grow with exponent
at most equal to d� �

�m
�m���p �m

d�� Again applying Corollary ��
� this

time to the union of these good intervals and the restrictions of the
functions� f�i � we get a j with "mh � j � "m	h� 
�� 
 such that����log Uu	 j	�r�Uu	 jr�

���� � log	�d��p
"m

	����
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and l� 
 functions f�� � � � � � f�l such that for i � � � � � � l�
f�i	 

j	�r� �  df�i	 jr� �	����

where d � �m���p �m
�m���p �m

d�� Finally� note that 	���� gives 	����� q�e�d�

Note that for all s � � and all i � 
Z
b
s

w���� �m�h��	rw�i�sjrbj � � �	����

This follows since w���� �m�h��	r lies in the linear span of fuk j k � �g
and w�i�s is orthogonal to uk 	k � �� at b � s for i � 
� Note also that
R�� R�� R� 	and hence R� are independent of l and also of the particular
harmonic functions�

The key for applications of Proposition ��
 is� for given l and  � �
to choosem and "m so large that the degree of growth� d� of the functions
f�� � � � � � f�l from the inner radius b � !r 	�  jr� to the outer radius
b �  !r is not much larger than d�� In fact� in the applications� the
more times that we need to iterate this step� the closer that d needs to
be to d�� Further� we will choose "m and R so large that Uu is almost
constant 	i�e�� almost separate variables� on the annulus between b � !r
and b �  !r� Here if  is large then u has to be even closer to separating
variables� so "m needs to be even larger� The reason for this is that we
want to apply Proposition ��
 to get a de�nite separation at b � !r�

In Section 
� we will need to keep close track of these relationships�

��� Harmonic functions with polynomial growth

As before� let M be an n�dimensional Riemannian manifold with
nonnegative Ricci curvature and Euclidean volume growth� and let p �
M be �xed�

We are now prepared to prove the main theorem� After some pre�
liminary remarks� the proof will consist of three steps� First� we will
�nd annuli and a subspace of the harmonic functions with polynomial
growth such that a basis for this subspace has controlled growth on
these annuli� This step relies mainly on the properties of the functions
fi constructed in Section � and the general properties of functions of
one variable with polynomial growth�

Next� we will construct a set of harmonic functions contained in
this subspace which have controlled growth� almost separate variables�
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and are pairwise almost orthogonal on a subannulus� We accomplish
this through repeated applications of Propositions ��
� ����� and ��
�
In essence� this step gives an e�ective version of the �niteness theorem�
and it is here that we strongly use the results on the frequency function
	and thus the Euclidean volume growth assumption��

Finally� we will use the uniform bound on the growth and the mean�
value inequality to get a Lipschitz bound for these harmonic functions
on a subannulus� Proposition ��� gives a bound on the number of such
functions� and the theorem will then follow since we can use this to
control the number of functions that we started with�

Proof� 	Theorem ����� Fix  � maxf L	n� ��� �g� Here  L	n� ��
is given by Corollary ���� Set

k� �

�
�

�

� n
�


� !Cnd ���d �	
��
�

where !C � !C	n� � � is the constant occuring in the meanvalue inequal�
ity� Proposition ���

By 	��� we can choose R� � R�	p� � � so large that for r � R������log br
���� � log p

�
�	
���

If r � R� then

X � fb �  

�
rg 	 A�

p
�



r � �

�
p
�
r
	p� �	
����

The relative volume comparison theorem� ���� ���� together with 	
����
imply that there exists an integer � � �	n� k� such that there exist at
most � disjoint balls of radius �r

��k with centers contained inX � We think
of X as a metric space with distance function given by the restriction
of the Riemannian distance on M � Let � be the probability measure on
X given by

�	A� �
	 r���n

���nnVM

Z
A�fb
�

� rg
jrbj �	
����

Note that the normalization in 	
���� comes from the fact that I� �
nVM � that is 	�
��� Applying Proposition ��� toX with the probability
measure �� we get a constant N � N 	k� n� such that for 
 � �

� any set

of 
�almost orthonormal functions with Lipschitz bound k
�r on X has

at most N � 
 elements�
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We will show that if dimHd � C� where C � C	N �� then for all
R � � we can �nd an r � R and N 
�almost orthonormal functions
with Lipschitz bound k

�r on X � This contradiction yields the result�
Choose integers m � � and "m � � so large that

�
m

m� 

�N � "m

"m� ��p "m

�N
�  �	
����

and

exp

�

log	��d�p

"m

�
�  �	
����

Further� let 	 "mi�i
����� �N satisfy "mi � "m� and set

�i � 
�d
log	��d�p

"mi

�	
����

Observe that 	
���� implies

�i
�d
exp

�i
�d

� �i
�d

�	
����

To simplify notation� de�ne inductively NN � NN��� NN��� � � � �N�� N��
by

NN � � �

Ni � 	Ni	� � 
� "mi	�m �
	
����

Further� for i � �� � � � �N � 
� set

Mi � mN�i#Nj
i	� "mj �

MN � 
 �
	
��
��

and

 i �  
Mi �	
��

�

Finally� for i � 
 let


�i � ��i�� 
���d �mi	� �mi

i �	
��
�

Note that  ���d �mi	� �mi

i depend not on "mi�� but only on "mj for j � i�
On the other hand �i�� depends only on "mi��� These two facts will allow
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us to choose "mi�� large so that 
i � 
� where 
 � �
� � That is� choose

"mN � "mN��� � � � � "m� inductively so large that 
i � 
� Observe that this
implies that if  �mi

i is large then �i�� must be small� The numbers "mi

are now �xed� as are the quantities Ni�Mi� i� �i� 
i which are de�ned
from the "mi�

We will show that we can take C	N � � N� � 
� To see this�
suppose that u� � 
� u�� � � � � u�N� � Hd	M� are linearly independent�
We may assume that ui	p� � � for all i � �� Given this set of harmonic
functions� we will now proceed� for all R � �� to construct an r � R and
a set� fvig� of 
�almost orthogonal harmonic functions on the annulus
fr � b �  rg� In addition each vi will �i�almost separate variables on
an annulus� fri � b �  irig� containing the annulus� fr � b �  rg�
In fact� for any j with 
 � j � N the functions vi with i � j will be
pairwise 
j�almost orthogonal on the larger annulus frj � b �  jrjg �
fr � b �  rg� Note that in order to show that vi and vj are 
j�almost
orthogonal 	with 
j � 
� on frj � b �  jrjg if i � j we will need vi
to �i�almost separate variables on fri � b �  irig � frj � b �  jrjg�
Since  i�� is much larger than  j�� if i � j we will need vi to be much
closer to separating variables than vj � cf� Section �� Note also that
for di�erent r the vi may be di�erent� It will be possible to do the
following construction for in�nitely many annuli� however� in the end
we need only do our construction on a 	single� su�ciently large annulus�

As in De�nition ��
� we set

f� � Iu� �	
��
��

w��r � u��	
��
��

and let f�� � � � � f�N� and w��r� � � � � w�N��r be as in that de�nition 	with
respect to u�� � � � � u�N��� These fi and wi�r will be �xed from now on�

The �rst step of the proof consists of �nding a sequence of annuli
where a subset of the functions� f�� � � � � f�N�� has controlled growth�
To get the initial control� we apply Corollary ��
� to get a subset
f�� � � � � � f�N� and in�nitely many integers j� such that for i � 
� � � � �N��

f�i	 
j�	�
� � �  �d

� f�i	 
j�
� � �	
��
��

Fix such a j�� and set r� �  
j�
� �

The next step is� for any such j� which is su�ciently large� to in�
ductively construct an independent set of harmonic functions which are
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pairwise 
�almost orthogonal and whose growth is controlled� At the
i�th stage of the induction� we will be working with Ni functions and
i independent harmonic functions on an annulus fri � b �  irig 	
fri�� � b �  i��ri��g 	 � � � 	 fr� � b �  �r�g 	 fr� � b �  �r�g�
These Ni functions will grow at most like di on these annuli� where for
i � 
� � � � �N �

	
��
�� di � d

�
m

m� 

�i

#i
j
�

�
"mj

"mj � �� p "mj

�
�

Note that from the choice of m and "m 	see 	
������ we have

d� � d� � � � � � dN � �d �	
��
��

Applying Proposition ��
� we get a "R� � "R�	p� "m�� �d� �� such that
if j� is large enough to ensure that

r� �  
j�
� � "R� �	
��
��

then there exist N�� 
 functions f�� � � � � � f�N��� and integers h� and j�
with � � h� � m �  and "m�h� � j� � "m�	h� � 
� � 
 such that for
i � � � � � �N� � 
�

f�i	 
j�	�
� r�� �  �d�

� f�i	 
j�
� r�� �	
��
��

for  j�� r� � s �  j�	�� r�





� Uv�	s� � �d� � 
�d �	
����

and �����log Uv�	 
j�	�
� r��

Uv�	 
j�
� r��

����� � log	
�d��p
"m�

� log	��d�p
"m�

�
��

�d

�

	
��
�

Here v� � w
����

�m��h���	
� r�

� Set r� �  
j�
� r�� Note that

 �
�r� �  

�m��h�	��
� r� �  �r��
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The frequency bounds 	
���� combined with 	��� and 	�
�� give
the following bound for the growth of Dv� �

Dv�	 
�
�r�� �Uv�	 

�
�r��Iv�	 

�
�r��

�
�dIv�	 �
�r�� � 
�d ��d

� Iv�	r��	
���

��d ��d
� Dv�	r�� �

Now by Proposition ���� we have that 	
����� 	
��
�� and 	
���
together with 	
���� give the existence of an

R� � R�	p� �d 
��d
� � 
�d� ��� 

�
�� � R�

such that if

r� �  
j�
� � R� �	
����

then v� ���almost separates variables on the annulus fr� � b �  �r�g�
We proceed inductively� Again by Proposition ��
� we get a "R� �

"R�	p� "m�� �d� �� 	in fact� "R� � "R� will do� such that if j� is large
enough to ensure that

r� �  
j�
� � "R� �	
����

then there exist N� � 
 functions f�� � � � � � f�N��� � where

f�i � ff�� � � � � � f�N���g�

and integers h� and j� with � � h� � m�  and

"m�h� � j� � "m�	h� � 
�� 


such that for i � � � � � �N� � 
�

f�i	 
j�	�
� r�� �  �d�

� f�i	 
j�
� r�� �	
����

for  j�� r� � s �  j�	�� r�





� Uv�	s� � �d� � 
�d �	
����

Iv�	 
�m��h�	��r� � �d� �m�Iv�	 

�m�h�r�

� ��d �m�Iv�	 
�m�h�r� �

	
����
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and �����log Uv�	 
j�	�
� r��

Uv�	 
j�
� r��

����� � log	
�d��p
"m�

� log	��d�p
"m�

�
��

�d

�

	
����

Here v� � w
����

�m��h���	
� r�

� Set r� �  
j�
� r�� Note that

r� �  �m�h�
� r� � r� �  �r� �  

�
�r�

�  
�m��h�	��
� r� �  �r� �

	
����

Using Proposition ��
 we will now show that v� and v� are 
��almost
orthogonal on the annulus

f �m�h�
� r� � b �  �m��h�	��

� r�g � fr� � b �  �r�g�
By de�nition� v� is a linear combination of u�� � � � � u�� and at b �
 

�m��h�	��
� r�� v� is orthogonal to all ui with i � 	�� thereforeZ

b
�
�m��h���	
� r�

v�v�jrbj � � �	
�����

Note also that by 	�
�� and 	
���� we have

Iv�	 
�m��h�	��
� r�� �  �m���d

� Iv�	 
�m�h�
� r�� �	
���
�

Since v� ���almost separates variables on the annulus� from Proposition
��
� 	
����� 	
������ 	
���
� it follows that

fr� � b �  �r�g � f �m�h�
� r� � b �  �m��h�	��

� r�g�

and by 	
����� we get for  �m�h�
� r� � s �  �m��h�	��

� r�����s��n
Z
b
s

v�v�jrbj
�����

� ��� 
���d	��� �m�
� Iv�	 

�m��h�	��
� r��Iv�	 

�m��h�	��
� r��

� ��� ���d	��� �m�
�  ��d �m�

� Iv�	 
�m�h�
� r��  

��d �m�
� Iv�	 

�m�h�
� r��

	
����

� 
��Iv�	 
�m�h�
� r��Iv�	 

�m�h�
� r�� � 
��Iv�	s�Iv�	s� �
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Here the last inequality follows from the monotonicity of I � that is� for
 �m�h�
� r� � s we have Ivi	 

�m�h�
� r�� � Ivi	s�� This proves that v� and v�

are 
��almost orthogonal on all level sets in the annulus

f �m�h�
� r� � b �  �m��h�	��

� r�g � fr� � b �  �r�g�
The frequency bounds 	
���� combined with 	��� and 	�
�� give

the following bound for the growth of Dv� �

Dv�	 
�
�r�� � Uv�	 

�
�r��Iv�	 

�
�r��	
�����

� 
�dIv�	 �
�r�� � 
�d ��d

� Iv�	r��	
�����

� �d ��d
� Dv�	r�� �

Now� as above� by Proposition ���� we have that 	
����� 	
�����
and 	
����� together with 	
���� yield the existence of an

R� � R�	p� �d 
��d
� � 
�d� ��� 

�
�� � R�

	in fact R� � R� will do� such that if

r� �  
j�
� � R� �	
�����

then v� ���almost separates variables on the annulus fr� � b �  �r�g�
For each j� satisfying 	
��
��� 	
��
��� and 	
����� after N stages

we are left with N linearly independent harmonic functions v�� � � � � vN
on the annulus fr � b �  rg� where

r � rN �  jNN � � � j�� �	
�����

Note that �r�� �r�� � �r�� �r�� � � � � � �rN � NrN � � �r� r��
On the annulus� fr � b �  rg� these harmonic functions� fvig� must�
	a� have U bounded by 
�d�
	b� �i�almost separate variables�

and� most importantly�
	c� be pairwise 
�almost orthogonal at all level sets�

The last step is to get a gradient bound� and hence a Lipschitz
bound� on X for these functions� This will allow us to apply the results
of Section � to deduce a contradiction�

To get the gradient bound� observe �rst that the uniform bound on
Uvi on the interval �r� r��

Uvi	s� � 
�d �	
�����
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implies by 	�
�� that

Ivi	 r� � ���dIvi
�
 

�
r

�
�	
�����

Furthermore� 	
����� yields that

Dvi	 r� � 
�d Ivi	 r� �	
�����

By 	
��� together with the meanvalue inequality� Proposition ���
we get a constant !C � !C	n� � � such that for r � R

	
�����

sup
B �p

�
r

jrvij� �
!C

Vol	Bp
�
� �r

�

Z
Bp�

� �r

jrvij�

�
�
�

�

� n
� !CDvi	 r�

	 r��VM

�

Combining 	
������ 	
������ and 	
����� leads to the gradient estimate

sup
B �p

�
r

jrvij� �
�
�

�

�n
� !CDvi	 r�

	 r��VM

�
�
�

�

�n
� 
� !Cd Ivi	 r�

	 r��VM

	
���
�

�
�
�

�

�n
� 
� !Cd ���dIvi

�
�
� r
	

	 r��VM

�

We now normalize the vi to get N 
�almost orthogonal harmonic
functions !v�� � � � � !vN on fr � b �  rg with I�vi	

�
� r� � nVM for i �


� � � � �N � From 	
���
� it follows that

sup
B �p

�
r

jr!vij� �
�
�

�

�n
�


� !Cnd ���d	 r��� �	
����

Finally note that by the triangle inequality we have that if x� y �
fb � �

� rg 	 B �
�
p
�
r then the minimal geodesic 	in M� between x and y

lies entirely inside B �p
�
r
�

Since the !vi are 
�almost orthonormal at b �
�
� r and satisfy the Lip�

schitz estimate which follows from the gradient bound 	
���� together
with the the above application of the triangle inequality� we can apply
Proposition ��� to obtain the theorem� q�e�d�
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Remark ���	�� 	Conical case�� If M is C	N� 	as it is in Section

�� then U is monotone nondecreasing by Lemma 
�
�� Given a set of
independent harmonic functions fuig 	 Hd� at r � 
 we can extract an
orthonormal basis vi for the space spanned by the ui� By Lemma 
���
the frequency of vi 	� Hd� is uniformly bounded by d� Integrating this
out to r �  leads to a uniform bound on Ivi	� and hence� given the
bound on Uvi � we get a uniform bound on Dvi	�� By the Li�Schoen
meanvalue inequality� we obtain a Lipschitz bound for r � 
 for the
independent functions� Proposition ��� now yields a bound on the di�
mension of Hd	C	N�� just in terms of d and the lower bound on the
Ricci curvature of N � In contrast to the results of Section 
� this bound
is not sharp�

��� Examples

In contrast to the Euclidean case� it is possible for M with non�
negative Ricci curvature to admit harmonic functions with nonintegral
rates of growth 	cf� Example 
����� Even if M is Ricci �at and K$ahler�
examples exist�

Example ����� 	Tian�Yau� ������ There exist Ricci �at K$ahler
manifolds with Euclidean volume growth which have harmonic func�
tions with growth strictly between one and two�

We note that there are manifolds with positive sectional curvature
which admit no nontrivial harmonic functions with polynomial growth�
To our knowledge� no such example has been constructed with Euclidean
volume growth even under the less restrictive assumption of nonnegative
Ricci curvature� see ��� for more on this�

Example ����� There exist manifolds with nonnegative Ricci cur�
vature 	in fact� positive sectional curvature� which admit no nontrivial
polynomial growth harmonic function� In fact� one may round o� a
metric of the form dr� � r��d��� where  � 
 and d�� is the standard
metric on Sn���

In this case� since �Br	p� is connected� if u � Hd� then by the max�
imum principle there exists x � �Br	p� with u	x� � u	p�� Integrating
along curves beginning at x� we obtain u � u	p� by using the gradient
estimate together with the facts that u has polynomial growth and that
diam �Br	p��r� �� This example was observed by Kasue in ��
��
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Example ����� 	Klembeck� ��
�� and cf� ������ In the holomorphic
case� there exists a K$ahler metric on Cn of positive sectional curvature
and quadratic curvature decay which does not admit any nonconstant
holomorphic functions with polynomial growth�

The next example reveals some of the di�culties in the general case
compared with the model case of a cone� It shows in particular that
unlike the model case of a cone the frequency of a harmonic function
on a manifold with nonnegative Ricci curvature and Euclidean volume
growth may not be monotone�

Example ���	� 	����� There exist manifolds with nonnegative Ricci
curvature� Euclidean volume growth� and quadratic curvature decay
which admit harmonic functions with polynomial growth whose fre�
quency oscillate between two di�erent numbers�

Let us explain the idea behind Example 

��� From Section 
 	The�
orem 
���� we know that for a cone the order of growth of u � Hd 	on a
large annulus� is given in terms of an eigenvalue of the cross�section 	see
	
����� If we consider a manifold which on a large annulus looks roughly
like an annulus in a cone centered at the vertex� then the growth of such
a u will be given almost in terms of an eigenvalue of the cross�section
of the cone� By changing the cross�section slowly into a di�erent cross�
section 	see ���� which is not isospectral to the original one we can change
the growth of u� Oscillating back and forth between two non�isospectral
cross�sections gives a harmonic function with polynomial growth on a
manifold with nonnegative Ricci curvature� Euclidean volume growth�
and for which the order at in�nity is not well de�ned�

We refer to ��� for an extensive discussion of examples of manifolds
with nonnegative Ricci curvature and nonuniqueness of tangent cones
at in�nity� Examples of manifolds with nonnegative Ricci curvature�
Euclidean volume growth� quadratic curvature decay� and for which the
tangent cone at in�nity is not unique were �rst constructed by Perelman�
�����

We end this section by showing that if one makes a small pertubation
	in an appropriate norm� of the metric� then dimHd remains unchanged�
In fact we have the following proposition which says that any polynomial
growth asymptotically harmonic function lies within a bounded distance
of a harmonic function 	this new harmonic function will of course be
forced to have the same rate of growth��

Proposition ����� Suppose that RicMn � � and Vol	Br	p�� � Vrn
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for some V � � �here we assume that n � ��� Suppose also that u is a
smooth function on M � and u and jruj have polynomial growth� If in
addition

j�uj � f	r�	

���

for some bounded� integrable �on Rn�� and nonnegative function� f � then

lim
t�� et�u	x�	

���

exists for all x� and further

	

��� ket�u� uk� � C	n�

�Z �

�
f	s�sn��ds� sup

�����
f

�
�

Proof� Since et�u	x� �
R
M
H	x� y� t�u	y�dy� we have that

�

�t
	et�u�	x� �

Z
M

�

�t
H	x� y� t�u	y�dy

�

Z
M

�H	x� y� t�u	y�dy�

	

���

Integrating by parts givesZ
Br�p�

�H	x� y� t�u	y�dy �

Z
�Br�p�

rnH	x� y� t�u	y�dy

�
Z
�Br�p�

H	x� y� t�rnudy	

�
��

�

Z
Br�p�

H	x� y� t��udy�

By the Bishop volume comparison theorem and the fact that u and jruj
have polynomial growth together with the fact thatH and

R
Ar�r���p�

jrH j�
decay exponentially we get that

	

�

� lim
r��

Z
Br�p�

�H	x� y� t�u	y�dy � lim
r��

Z
Br�p�

H	x� y� t��udy�

Further�

	

�
�

�����
Z
Br�p�

H	x� y� t��udy

������
Z
Br�p�

H	x� y� t�f	r	y��dy�
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Using the Li�Yau estimate on the heat kernel � see ����� i�e�� for any
� � � there exists a constant C � � such that

H	x� y� t�� Ct�
n
� exp

�
�jx� yj�
	� � ��t

�
� �	

�
��

we have

	

�
��

Z
M

H	x� y� t�f	r	y��dy

� C

Z
M

t�
n
� exp

�
�jx� yj�
	� � ��t

�
f	r	y��dy �

We will now deal separately with the cases t � 
 and t � 
� For
t � 
� we bound the right�hand side in terms of the sup of f and the
integral of the Euclidean heat kernel 	again using the Bishop volume
comparison theorem�� That is�

	

�
��

Z
M

H	x� y� t�f	r	y��dy

� C sup f

Z
M

t�
n
� exp

�
�jx� yj�
	� � ��t

�
dy

� C sup f �

For t at least one� we have that exp
�
� jx�yj�

�t

�
� 
� and

	

�
��

Z
M

H	x� y� t�f	r	y��dy � Ct�
n
�

Z
M

f	r	y��dy �

Now combining 	

�
�� and 	

�
�� yields the boundZ �

�

���� ��t	et�u�	x�
���� �

Z �

�
	C sup f�

�

Z
M

f	r	y��dy

Z �

�
Ct�

n
�	

�
��

�C	n�
�Z �

�
f	s�sn��ds� sup

�����
f

�
�

which proves 	

���� Since

et�u	x�� u	x� �

Z
M

H	x� y� t�	u	y�� u	x��dy�

	

��� follows by the same argument� q�e�d�
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Appendix A� The �rst variation of energy

In this appendix� we will� for the sake of completeness� collect some
well�known consequences of the �rst variation of energy that we need
for this paper�

In the following� we will takeM to be a complete Riemannian man�
ifold and u to be a smooth function on M � Given a one�parameter
family �t of di�eomorphisms of M we de�ne a one�parameter family of
functions ut � u � �t� We let v denote d	t

dt �

Let B be a bounded domain in M � Henceforth� we suppose that
the di�eomorphisms are the identity outside of B� equivalently� we take
the vector �eld v to have support in B� Now we de�ne Et to be the
Dirichlet energy of ut in B� that is�

Et �

Z
B

jrutj� �	A�
�

Lemma A��� 	First Variation�� Let M and v be as above� Then
the �rst variation of energy is given by

E�	�� � 
Z
B

r	v�	ru�ru��
Z
B

jruj�div	v� �	A���

In the following� we will work in normal coordinates� We can then
rewrite 	A��� as

E�	�� � 
Z
B

vijuiuj �
Z
B

u�i vjj �	A���

where additional indices refer to covariant derivatives� and the usual
summation conventions are to be understood�

Proof� By de�nition� we have

E�t �
d

dt

Z
B

jrutj� �	A���

Di�erentiating under the integral sign gives

E�t �
Z
B

d

dt
jrutj� � 

Z
B

hr d
dt
	rut� �ruti �	A���
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We will now calculate the integrand above in normal coordinates� By
the chain rule�

d

dt

����
t
�

jrutj� � 
�
%uj���ji � uj %���ji

�
	uj���ji� �	A���

By construction� we have

���ji � �ij and %���ji � vji �	A���

Combining 	A��� and 	A��� yields

d

dt

����
t
�

jrutj� �  	 %uiui � ujuivji� �	A���

Note that we can rewrite the �rst term above as

 %uiui �
d

dt

����
t
�

jruj�	�t� �	A�
��

Integrating equation 	A�
��� we get that the integral of the �rst term in
equation 	A��� is given by

d

dt

����
t
�

Z
B

jruj�	�t� �	A�

�

which becomes� by the change of variables formula�

	A�
�
d

dt

����
t
�

Z
B

jruj�Jac	���t � �

Z
B

jruj� d

dt

����
t
�

Jac	���t � �

To �rst order� we have that �t�ij � �ij � tvij � therefore

Jac	�t� � det	�ij � tvij�

�
 � t	vjj� �O	t�� �
	A�
��

Thus

	A�
��
d

dt

����
t
�

Z
B

jruj�Jac	���t � �
Z
B

jruj�	�div	v�� �

Putting the above all together� the lemma now follows� q�e�d�

We will now derive some general identities from the �rst variation
formula� by making careful choices of the domain B and the variation
vector �eld v� Let b be a Lipschitz function such that

B � fx �M j b	x� � rg�	A�
��
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Take 	 � R� R to be a cut�o� function with support in fjxj � rg such
that

	A�
�� 		x� � 
 for x � 	r� �� and 	 � � linearly otherwise�

Let A� denote the region in B on which b � 	r� ��� Finally� we choose
the variation vector �eld v to be

v	x� �




		b	x��rb� �	A�
��

We will often write 	 for 	 � b�
Note that by 	A�
���

div	v� �




	�	b�� �





	�hrb�rb�i �	A�
��

It follows from 	A�
�� that given any function u�Z
B

jruj�div	v� �



Z
B

	jruj��b�

� 


�

Z
A�

jruj�b jrbj� �
	A�
��

Similarly�

vji �





�
	�bi	b��j � 		b��ji

�
�	A���

	A�
�


Z
B

rv	ru�ru� �
Z
B

	Hess	b��	ru�ru�

�
�

Z
A�

bhru�rbi� �

Combining 	A�
�� and 	A�
�� the �rst variation formula 	A��� implies
the following�

E�	�� � �



Z
B

	jruj��b�

�



�

Z
A�

jruj�b jrbj�

�

Z
B

	Hess	b��	ru�ru�

� 

�

Z
A�

bhru�rbi� �

	A��
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If we now let � approach zero� we get the following proposition�
Proposition A���� If u is harmonic� and b and B are as above�

then






Z
B

jruj��b� �
Z
B

Hess	b��	ru�ru�

� r

Z
�B

jruj�jrbj � r
Z
�B

�����u�n
����� jrbj �

	A���

where �u
�n

is the normal derivative of u on �B� Recall that �B �
fxjb	x� � rg�

Proof� Since u is harmonic� it is a critical point for the energy
functional and E �	�� � �� By 	A��� we have






Z
B

	jruj��b� �
Z
B

	Hess	b��	ru�ru�

�



�

Z
A�

jruj�b jrbj� � 

�

Z
A�

bhru�rbi� �	A���

As � � �� the left�hand side in 	A��� clearly approaches the left�hand
side in 	A���� Furthermore� the tube A� is to �rst order a subdomain
of the normal bundle of �B of width �

jrbj � It follows that the right�side
of 	A��� approaches the right�side of 	A���� q�e�d�

Corollary A��
� If u is harmonic� and � is the distance function
from a �xed point p �M � then






Z
Br

jruj���� �
Z
Br

Hess	���	ru�ru�

�r

Z
�Br

jruj� � r
Z
�Br

�����u�r
����
�

�	A���

where Br is the ball of radius r� and �u
�r

is the radial derivative of u on
�Br�

Remark A���� If we take M to be C	N�� the cone on a compact
manifold N � then Hess	��� � �ij where � is the distance from the
vertex� For example� C	S�n���� isRn� Therefore� Corollary A�� implies
that

	n� �
Z
Br

jruj� �r
Z
�Br

jruj�

� r
Z
�Br

�����u�r
����� �

	A���



�
 tobias h� colding � william p� minicozzi ii

where Br is the ball of radius r centered at the vertex of the cone� If
we let D	r� denote the scaled energy on the ball of radius r centered at
the vertex� then

D�	r� � 	� n�r��D	r� � r��n
Z
�Br

jruj� �	A����

By substituting equation 	A���� equation 	A���� becomes

D�	r� � r��n
Z
�Br

�����u�r
����
�

� ��	A��
�

Equation 	A��
� is the usual monotonicity of scaled energy�
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